CGAL 6.0 - Quadtrees, Octrees, and Orthtrees
Loading...
Searching...
No Matches
Orthtree/octree_grade.cpp
#include <iostream>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Octree.h>
// Type Declarations
using Point = Kernel::Point_3;
using Point_vector = std::vector<Point>;
int main() {
// Here, our point set is a vector
Point_vector points;
// Add a few points to the vector, most of which are in one region
points.emplace_back(1, 1, 1);
points.emplace_back(2, 1, -11);
points.emplace_back(2, 1, 1);
points.emplace_back(1, -2, 1);
points.emplace_back(1, 1, 1);
points.emplace_back(-1, 1, 1);
points.emplace_back(-1.1, 1, 1);
points.emplace_back(-1.01, 1, 1);
points.emplace_back(-1.001, 1, 1);
points.emplace_back(-1.0001, 1, 1);
points.emplace_back(-1.0001, 1, 1);
// Create an octree from the points
Octree octree(points);
// Build the octree with a small bucket size, so we get a deep node
octree.refine(10, 2);
// Print out the tree
std::cout << "\nUn-graded tree" << std::endl;
std::cout << "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" << std::endl;
std::cout << octree << std::endl;
// Grade the tree to eliminate large jumps in depth
octree.grade();
// Print out the tree again
std::cout << "\nGraded tree" << std::endl;
std::cout << "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" << std::endl;
std::cout << octree << std::endl;
return EXIT_SUCCESS;
}
A data structure using an axis-aligned hyperrectangle decomposition of dD space for efficient access ...
Definition: Orthtree.h:117