More formally the problem can be defined as follows.
Given a finite set of points, compute a point set with such that the p-radius of ,
is minimized. We can interpret as the best approximation (with respect to the given metric) for with at most p points.
#include <CGAL/rectangular_p_center_2.h>
| ||||||
|
|
computes rectilinear p-centers for the point set described by the range [f, l), sets r to the corresponding -radius, writes the at most p center points to o and returns the past-the-end iterator of this sequence.
Precondition:
The geometric types and operations to be used for the computation are specified by the traits class parameter t. This parameter can be omitted if ForwardIterator refers to a point type from the 2D-Kernel. In this case, a default traits class (Rectangular_p_center_default_traits_2<R>) is used.
Requirement:
#include <CGAL/Cartesian.h> #include <CGAL/point_generators_2.h> #include <CGAL/rectangular_p_center_2.h> #include <CGAL/IO/Ostream_iterator.h> #include <CGAL/algorithm.h> #include <iostream> #include <algorithm> #include <vector> typedef double FT; struct Kernel : public CGAL::Cartesian<FT> {}; typedef Kernel::Point_2 Point; typedef std::vector<Point> Cont; typedef CGAL::Random_points_in_square_2<Point> Generator; typedef CGAL::Ostream_iterator<Point,std::ostream> OIterator; int main() { int n = 10; int p = 2; OIterator cout_ip(std::cout); CGAL::set_pretty_mode(std::cout); Cont points; CGAL::copy_n(Generator(1), n, std::back_inserter(points)); std::cout << "Generated Point Set:\n"; std::copy(points.begin(), points.end(), cout_ip); FT p_radius; std::cout << "\n\n" << p << "-centers:\n"; CGAL::rectangular_p_center_2( points.begin(), points.end(), cout_ip, p_radius, 3); std::cout << "\n\n" << p << "-radius = " << p_radius << std::endl; return 0; }