A model of this concepts represents numbers that are embeddable on the real axis. The type obeys the algebraic structure and compares two values according to the total order of the real numbers.
Moreover, CGAL::Real_embeddable_traits< RealEmbeddable > is a model of
RealEmbeddableTraits
with:
- CGAL::Real_embeddable_traits< RealEmbeddable >::Is_real_embeddable set to Tag_true
and functors :
- CGAL::Real_embeddable_traits< RealEmbeddable >::Is_zero
- CGAL::Real_embeddable_traits< RealEmbeddable >::Abs
- CGAL::Real_embeddable_traits< RealEmbeddable >::Sgn
- CGAL::Real_embeddable_traits< RealEmbeddable >::Is_positive
- CGAL::Real_embeddable_traits< RealEmbeddable >::Is_negative
- CGAL::Real_embeddable_traits< RealEmbeddable >::Compare
- CGAL::Real_embeddable_traits< RealEmbeddable >::To_double
- CGAL::Real_embeddable_traits< RealEmbeddable >::To_interval
Remark:
If a number type is a model of both IntegralDomainWithoutDivision and
RealEmbeddable, it follows that the ring represented by such a number type
is a sub-ring of the real numbers and hence has characteristic zero.
bool | a == b | |
bool | a != b | |
bool | a < b | |
bool | a <= b | |
bool | a > b | |
bool | a >= b |