\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - Geometric Object Generators
CGAL::Random_points_in_cube_d< Point_d > Class Template Reference

#include <CGAL/point_generators_d.h>

Definition

Types

typedef std::input_iterator_tag iterator_category
 
typedef Point_d value_type
 
typedef std::ptrdiff_t difference_type
 
typedef const Point_d * pointer
 
typedef const Point_d & reference
 

Operations

 Random_points_in_cube_d (int dim, double a, Random &rnd=get_default_random())
 \( g\) is an input iterator creating points of type Point_d uniformly distributed in the half-open cube of dimension \( dim\) with side length \( 2 a\), centered at the origin. More...
 

Constructor & Destructor Documentation

◆ Random_points_in_cube_d()

template<typename Point_d>
CGAL::Random_points_in_cube_d< Point_d >::Random_points_in_cube_d ( int  dim,
double  a,
Random rnd = get_default_random() 
)

\( g\) is an input iterator creating points of type Point_d uniformly distributed in the half-open cube of dimension \( dim\) with side length \( 2 a\), centered at the origin.

For every point \( p = *g\) and for all \( i<dim\) we have \( -a \le p[i] < a\). \( dim\) random numbers are needed from rnd for each point.