CGAL 4.12.1 - Geometric Object Generators
CGAL::Random_points_in_triangle_3< Point_3, Creator > Class Template Reference

#include <CGAL/point_generators_3.h>

## Definition

The class Random_points_in_triangle_3 is an input iterator creating points uniformly distributed inside a 3D triangle.

The default Creator is Creator_uniform_3<Kernel_traits<Point_3>Kernel::RT,Point_3>.

Is Model Of:

InputIterator

PointGenerator

CGAL::cpp11::copy_n()
CGAL::Counting_iterator
CGAL::Random_points_in_disc_2<Point_2, Creator>
CGAL::Random_points_in_cube_3<Point_3, Creator>
CGAL::Random_points_in_tetrahedron_3<Point_3, Creator>
CGAL::Random_points_on_sphere_3<Point_3, Creator>
std::random_shuffle
Examples:
Generator/random_points_tetrahedron_and_triangle_3.cpp.

## Types

typedef std::input_iterator_tag iterator_category

typedef Point_3 value_type

typedef std::ptrdiff_t difference_type

typedef const Point_3pointer

typedef const Point_3reference

Random_points_in_triangle_3 (Point_3 &p, Point_3 &q, Point_3 &r, Random &rnd=get_default_random())
Creates an input iterator g generating points of type Point_3 uniformly distributed inside the 3D triangle with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$. More...

Random_points_in_triangle_3 (Triangle_3 &t, Random &rnd=get_default_random())
Creates an input iterator g generating points of type Point_3 uniformly distributed inside a 3D triangle $$t$$ with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$. More...

## ◆ Random_points_in_triangle_3() [1/2]

template<typename Point_3 , typename Creator >
 CGAL::Random_points_in_triangle_3< Point_3, Creator >::Random_points_in_triangle_3 ( Point_3 & p, Point_3 & q, Point_3 & r, Random & rnd = get_default_random() )

Creates an input iterator g generating points of type Point_3 uniformly distributed inside the 3D triangle with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$.

Two random numbers are needed from rnd for each point.

## ◆ Random_points_in_triangle_3() [2/2]

template<typename Point_3 , typename Creator >
 CGAL::Random_points_in_triangle_3< Point_3, Creator >::Random_points_in_triangle_3 ( Triangle_3 & t, Random & rnd = get_default_random() )

Creates an input iterator g generating points of type Point_3 uniformly distributed inside a 3D triangle $$t$$ with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$.

Two random numbers are needed from rnd for each point.