\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12.1 - Geometric Object Generators
CGAL::Random_points_on_square_2< Point_2, Creator > Class Template Reference

#include <CGAL/point_generators_2.h>

Definition

Types

typedef std::input_iterator_tag iterator_category
 
typedef Point_2 value_type
 
typedef std::ptrdiff_t difference_type
 
typedef const Point_2pointer
 
typedef const Point_2reference
 
 Random_points_on_square_2 (double a, Random &rnd=get_default_random())
 creates an input iterator g generating points of type Point_2 uniformly distributed on the boundary of the square with side length \( 2 a\), centered at the origin, i.e. \( \forall p = *g:\) one coordinate is either \( a\) or \( -a\) and for the other coordinate \( c\) holds \( -a \le c < a\). More...
 

Constructor & Destructor Documentation

◆ Random_points_on_square_2()

template<typename Point_2 , typename Creator >
CGAL::Random_points_on_square_2< Point_2, Creator >::Random_points_on_square_2 ( double  a,
Random rnd = get_default_random() 
)

creates an input iterator g generating points of type Point_2 uniformly distributed on the boundary of the square with side length \( 2 a\), centered at the origin, i.e. \( \forall p = *g:\) one coordinate is either \( a\) or \( -a\) and for the other coordinate \( c\) holds \( -a \le c < a\).

A single random number is needed from rnd for each point.