\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12 - 2D and 3D Linear Geometry Kernel
Kernel::ConstructCircumcenter_2 Concept Reference

Definition

Refines:
AdaptableFunctor (with three arguments)
See also
CGAL::circumcenter()

Operations

A model of this concept must provide:

Kernel::Point_2 operator() (const Kernel::Point_2 &p, const Kernel::Point_2 &q)
 compute the center of the smallest circle passing through the points p and q. More...
 
Kernel::Point_2 operator() (const Kernel::Point_2 &p, const Kernel::Point_2 &q, const Kernel::Point_2 &r)
 compute the center of the circle passing through the points p, q, and r. More...
 
Kernel::Point_2 operator() (const Kernel::Triangle_2 &t)
 compute the center of the circle passing through the three vertices of t. More...
 

Member Function Documentation

◆ operator()() [1/3]

Kernel::Point_2 Kernel::ConstructCircumcenter_2::operator() ( const Kernel::Point_2 p,
const Kernel::Point_2 q 
)

compute the center of the smallest circle passing through the points p and q.

Note : this is the same as Kernel::ConstructMidpoint_2.

◆ operator()() [2/3]

Kernel::Point_2 Kernel::ConstructCircumcenter_2::operator() ( const Kernel::Point_2 p,
const Kernel::Point_2 q,
const Kernel::Point_2 r 
)

compute the center of the circle passing through the points p, q, and r.

Precondition
p, q, and r are not collinear.

◆ operator()() [3/3]

Kernel::Point_2 Kernel::ConstructCircumcenter_2::operator() ( const Kernel::Triangle_2 t)

compute the center of the circle passing through the three vertices of t.

Precondition
t is not degenerate.