\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14.3 - Polynomial
PolynomialTraits_d::Scale Concept Reference

Definition

Given a constant \( c\) this AdaptableBinaryFunction scales a PolynomialTraits_d::Polynomial_d \( p\) with respect to one variable, that is, it computes \( p(c\cdot x)\).

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate polynomial in one specific variable.

Refines:

AdaptableBinaryFunction

CopyConstructible

DefaultConstructible

See also
Polynomial_d
PolynomialTraits_d

Types

typedef PolynomialTraits_d::Polynomial_d result_type
 
typedef PolynomialTraits_d::Polynomial_d first_argument_type
 
typedef PolynomialTraits_d::Innermost_coefficient_type second_argument_type
 

Operations

result_type operator() (first_argument_type p, second_argument_type c)
 Returns \( p(c\cdot x)\), with respect to the outermost variable.
 
result_type operator() (first_argument_type p, second_argument_type c, int i)
 Same as first operator but for variable \( x_i\). More...
 

Member Function Documentation

◆ operator()()

result_type PolynomialTraits_d::Scale::operator() ( first_argument_type  p,
second_argument_type  c,
int  i 
)

Same as first operator but for variable \( x_i\).

Precondition
\( 0 \leq i < d\).