\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - Algebraic Foundations
FieldNumberType Concept Reference

Definition

The concept FieldNumberType combines the requirements of the concepts Field and RealEmbeddable. A model of FieldNumberType can be used as a template parameter for Cartesian kernels.

Refines:

Field

RealEmbeddable

Has Models:

float

double

CGAL::Gmpq

CGAL::Interval_nt

CGAL::Interval_nt_advanced

CGAL::Lazy_exact_nt<FieldNumberType>

CGAL::Quotient<RingNumberType>

leda_rational

leda_bigfloat

leda_real

See also
RingNumberType
Kernel