\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - Number Types
leda_rational Class Reference

#include <CGAL/leda_rational.h>

Definition

The class leda_rational provides exact computation in \( \mathbb{Q}\).

The class leda_rational is a wrapper class that provides the functions needed to use the number type rational, representing exact multiprecision rational numbers provided by LEDA.

Is Model Of:

Field

RealEmbeddable

Fraction

FromDoubleConstructible

For more details on the number types of LEDA we refer to the LEDA manual [Solutions].