 CGAL 4.14 - Geometric Object Generators
CGAL::Random_points_in_triangle_3< Point_3, Creator > Class Template Reference

#include <CGAL/point_generators_3.h>

Types

typedef std::input_iterator_tag iterator_category

typedef Point_3 value_type

typedef std::ptrdiff_t difference_type

typedef const Point_3pointer

typedef const Point_3reference

Random_points_in_triangle_3 (Point_3 &p, Point_3 &q, Point_3 &r, Random &rnd=get_default_random())
Creates an input iterator g generating points of type Point_3 uniformly distributed inside the 3D triangle with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$. More...

Random_points_in_triangle_3 (Triangle_3 &t, Random &rnd=get_default_random())
Creates an input iterator g generating points of type Point_3 uniformly distributed inside a 3D triangle $$t$$ with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$. More...

◆ Random_points_in_triangle_3() [1/2]

template<typename Point_3 , typename Creator >
 CGAL::Random_points_in_triangle_3< Point_3, Creator >::Random_points_in_triangle_3 ( Point_3 & p, Point_3 & q, Point_3 & r, Random & rnd = get_default_random() )

Creates an input iterator g generating points of type Point_3 uniformly distributed inside the 3D triangle with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$.

Two random numbers are needed from rnd for each point.

◆ Random_points_in_triangle_3() [2/2]

template<typename Point_3 , typename Creator >
 CGAL::Random_points_in_triangle_3< Point_3, Creator >::Random_points_in_triangle_3 ( Triangle_3 & t, Random & rnd = get_default_random() )

Creates an input iterator g generating points of type Point_3 uniformly distributed inside a 3D triangle $$t$$ with vertices $$p, q$$ and $$r$$, i.e., $$*g = \alpha p + \beta q + \gamma r$$, for some $$\alpha, \beta, \gamma \in [0, 1]$$ and $$\alpha + \beta + \gamma = 1$$.

Two random numbers are needed from rnd for each point.