\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - Geometric Object Generators
RandomConvexHullTraits_2 Concept Reference

Definition

The concept RandomConvexHullTraits_2 describes the requirements for the traits class used by the function random_convex_hull_in_disc_2().

Has Models:
CGAL kernels.

Operations

The following two member functions returning instances of the above predicate object types are required.

Types

typedef unspecified_type FT
 The coordinate type of the points of the polygon.
 
typedef unspecified_type Point_2
 The point type of the polygon.
 
typedef unspecified_type Segment_2
 The segment type of the polygon.
 
typedef unspecified_type Orientation_2
 Predicate object type that determines the orientation of three points. More...
 
typedef unspecified_type Compare_x_2
 A function object to compare the x-coordinate of two points. More...
 
typedef unspecified_type Compare_y_2
 A function object to compare the y-coordinate of two points. More...
 

Operations

Compare_x_2 compare_x_2_object ()
 
Compare_y_2 compare_y_2_object ()
 
Orientation_2 orientation_2_object ()
 

Member Typedef Documentation

◆ Compare_x_2

A function object to compare the x-coordinate of two points.

Provides the operator:

Comparison_result operator()(Point p, Point q)

which returns SMALLER, EQUAL or LARGER according to the \( x\)-ordering of points p and q.

◆ Compare_y_2

A function object to compare the y-coordinate of two points.

Provides the operator:

Comparison_result operator()(Point p, Point q)

which returns (SMALLER, EQUAL or LARGER) according to the \( y\)-ordering of points p and q.

◆ Orientation_2

Predicate object type that determines the orientation of three points.

It must provide Orientation operator()(Point_2 p, Point_2 q, Point_2 r) that returns LEFT_TURN, if \( r\) lies to the left of the oriented line \( l\) defined by \( p\) and \( q\), returns RIGHT_TURN if \( r\) lies to the right of \( l\), and returns COLLINEAR if \( r\) lies on \( l\).