\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - 2D and 3D Linear Geometry Kernel

Definition

Refines:
AdaptableFunctor (with two arguments)
See also
CGAL::parallel()

Operations

A model of this concept must provide:

bool operator() (const Kernel::Line_3 &l1, const Kernel::Line_3 &l2)
 returns true, if l1 and l2 are parallel or if one of those (or both) is degenerate.
 
bool operator() (const Kernel::Plane_3 &h1, const Kernel::Plane_3 &h2)
 returns true, if h1 and h2 are parallel or if one of those (or both) is degenerate.
 
bool operator() (const Kernel::Ray_3 &r1, const Kernel::Ray_3 &r2)
 returns true, if r1 and r2 are parallel or if one of those (or both) is degenerate.
 
bool operator() (const Kernel::Segment_3 &s1, const Kernel::Segment_3 &s2)
 returns true, if s1 and s2 are parallel or if one of those (or both) is degenerate.