\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - 2D and 3D Linear Geometry Kernel

Definition

Operations

A model of this concept must provide:

Bounded_side operator() (const Kernel::Sphere_3 &s, const Kernel::Point_3 &p)
 returns either CGAL::ON_UNBOUNDED_SIDE, CGAL::ON_BOUNDED_SIDE, or the constant CGAL::ON_BOUNDARY, depending on where point p is with respect to sphere s.
 
Bounded_side operator() (const Kernel::Tetrahedron_3 &t, const Kernel::Point_3 &p)
 returns either CGAL::ON_UNBOUNDED_SIDE, CGAL::ON_BOUNDED_SIDE, or the constant CGAL::ON_BOUNDARY, depending on where point p is with respect to tetrahedron t.
 
Bounded_side operator() (const Kernel::Iso_cuboid_3 &c, const Kernel::Point_3 &p)
 returns either CGAL::ON_UNBOUNDED_SIDE, CGAL::ON_BOUNDED_SIDE, or the constant CGAL::ON_BOUNDARY, depending on where point p is with respect to iso-cuboid c.