\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - 2D and 3D Linear Geometry Kernel

Definition

Operations

A model of this concept must provide:

Kernel::Point_2 operator() (const Kernel::Line_2 &l, int i)
 returns an arbitrary point on l. More...
 
Kernel::Point_2 operator() (const Kernel::Ray_2 &r, int i)
 returns a point on r. More...
 
Kernel::Point_2 operator() (const Kernel::Segment_2 &s, int i)
 returns source or target of s: point(0) returns the source of s, point(1) returns the target of s. More...
 

Member Function Documentation

◆ operator()() [1/3]

Kernel::Point_2 Kernel::ConstructPointOn_2::operator() ( const Kernel::Line_2 l,
int  i 
)

returns an arbitrary point on l.

It holds point(i) == point(j), iff i==j. Furthermore, is directed from point(i) to point(j), for all i < j.

◆ operator()() [2/3]

Kernel::Point_2 Kernel::ConstructPointOn_2::operator() ( const Kernel::Ray_2 r,
int  i 
)

returns a point on r.

point(0) is the source, point(i), with i>0, is different from the source.

Precondition
i>= 0.

◆ operator()() [3/3]

Kernel::Point_2 Kernel::ConstructPointOn_2::operator() ( const Kernel::Segment_2 s,
int  i 
)

returns source or target of s: point(0) returns the source of s, point(1) returns the target of s.

The parameter i is taken modulo 2, which gives easy access to the other end point.