\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - 2D and 3D Linear Geometry Kernel

Definition

Operations

A model of this concept must provide:

bool operator() (const Kernel::Circle_3 &o)
 returns true iff o is degenerate.
 
bool operator() (const Kernel::Iso_cuboid_3 &o)
 returns true iff o is degenerate.
 
bool operator() (const Kernel::Line_3 &o)
 returns true iff o is degenerate.
 
bool operator() (const Kernel::Plane_3 &o)
 returns true iff o is degenerate.
 
bool operator() (const Kernel::Ray_3 &o)
 returns true iff o is degenerate.
 
bool operator() (const Kernel::Segment_3 &o)
 returns true iff o is degenerate.
 
bool operator() (const Kernel::Sphere_3 &o)
 returns true iff o is degenerate.
 
bool operator() (const Kernel::Tetrahedron_3 &o)
 returns true iff o is degenerate.
 
bool operator() (const Kernel::Triangle_3 &o)
 returns true iff o is degenerate.