\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.14 - 2D and 3D Linear Geometry Kernel

Definition

Operations

A model of this concept must provide:

Oriented_side operator() (const Kernel::Circle_2 &c, const Kernel::Point_2 &p)
 returns CGAL::ON_ORIENTED_BOUNDARY, CGAL::ON_NEGATIVE_SIDE, or the constant CGAL::ON_POSITIVE_SIDE, depending on the position of p relative to the oriented circle c.
 
Oriented_side operator() (const Kernel::Line_2 &l, const Kernel::Point_2 &p)
 returns CGAL::ON_ORIENTED_BOUNDARY, CGAL::ON_NEGATIVE_SIDE, or the constant CGAL::ON_POSITIVE_SIDE, depending on the position of p relative to the oriented line l.
 
Oriented_side operator() (const Kernel::Triangle_2 &t, const Kernel::Point_2 &p)
 returns CGAL::ON_ORIENTED_BOUNDARY, CGAL::ON_NEGATIVE_SIDE, or the constant CGAL::ON_POSITIVE_SIDE, depending on the position of p relative to the oriented triangle t.