CGAL 4.3 - 2D Conforming Triangulations and Meshes
|
Namespaces | |
cpp11 | |
IO | |
Mesh_2 | |
Typedefs | |
typedef Interval_nt< false > | Interval_nt_advanced |
typedef Interval_nt< false > | Interval_nt_advanced |
typedef Hilbert_policy< Median > | Hilbert_sort_median_policy |
typedef Hilbert_policy< Middle > | Hilbert_sort_middle_policy |
typedef Hilbert_policy< Median > | Hilbert_sort_median_policy |
typedef Hilbert_policy< Middle > | Hilbert_sort_middle_policy |
Functions | |
NT | abs (const NT &x) |
result_type | compare (const NT &x, const NT &y) |
result_type | div (const NT1 &x, const NT2 &y) |
void | div_mod (const NT1 &x, const NT2 &y, result_type &q, result_type &r) |
result_type | gcd (const NT1 &x, const NT2 &y) |
result_type | integral_division (const NT1 &x, const NT2 &y) |
NT | inverse (const NT &x) |
result_type | is_negative (const NT &x) |
result_type | is_one (const NT &x) |
result_type | is_positive (const NT &x) |
result_type | is_square (const NT &x) |
result_type | is_square (const NT &x, NT &y) |
result_type | is_zero (const NT &x) |
NT | kth_root (int k, const NT &x) |
result_type | mod (const NT1 &x, const NT2 &y) |
NT | root_of (int k, InputIterator begin, InputIterator end) |
result_type | sign (const NT &x) |
void | simplify (const NT &x) |
NT | sqrt (const NT &x) |
NT | square (const NT &x) |
double | to_double (const NT &x) |
std::pair< double, double > | to_interval (const NT &x) |
NT | unit_part (const NT &x) |
void | Assert_circulator (const C &c) |
void | Assert_iterator (const I &i) |
void | Assert_circulator_or_iterator (const IC &i) |
void | Assert_input_category (const I &i) |
void | Assert_output_category (const I &i) |
void | Assert_forward_category (const IC &ic) |
void | Assert_bidirectional_category (const IC &ic) |
void | Assert_random_access_category (const IC &ic) |
C::difference_type | circulator_distance (C c, C d) |
C::size_type | circulator_size (C c) |
bool | is_empty_range (const IC &i, const IC &j) |
iterator_traits< IC > ::difference_type | iterator_distance (IC ic1, IC ic2) |
Iterator_tag | query_circulator_or_iterator (const I &i) |
Circulator_tag | query_circulator_or_iterator (const C &c) |
Mode | get_mode (std::ios &s) |
Mode | set_ascii_mode (std::ios &s) |
Mode | set_binary_mode (std::ios &s) |
Mode | set_mode (std::ios &s, IO::Mode m) |
Mode | set_pretty_mode (std::ios &s) |
bool | is_ascii (std::ios &s) |
bool | is_binary (std::ios &s) |
bool | is_pretty (std::ios &s) |
Output_rep< T > | oformat (const T &t) |
Input_rep< T > | iformat (const T &t) |
Output_rep< T, F > | oformat (const T &t, F) |
ostream & | operator<< (ostream &os, Class c) |
istream & | operator>> (istream &is, Class c) |
bool | has_in_x_range (const Circular_arc_2< CircularKernel > &ca, const Circular_arc_point_2< CircularKernel > &p) |
bool | has_in_x_range (const Line_arc_2< CircularKernel > &ca, const Circular_arc_point_2< CircularKernel > &p) |
bool | has_on (const Circle_2< CircularKernel > &c, const Circular_arc_point_2< CircularKernel > &p) |
OutputIterator | make_x_monotone (const Circular_arc_2< CircularKernel > &ca, OutputIterator res) |
OutputIterator | make_xy_monotone (const Circular_arc_2< CircularKernel > &ca, OutputIterator res) |
Circular_arc_point_2 < CircularKernel > | x_extremal_point (const Circle_2< CircularKernel > &c, bool b) |
OutputIterator | x_extremal_points (const Circle_2< CircularKernel > &c, OutputIterator res) |
Circular_arc_point_2 < CircularKernel > | y_extremal_point (const Circle_2< CircularKernel > &c, bool b) |
OutputIterator | y_extremal_points (const Circle_2< CircularKernel > &c, OutputIterator res) |
CGAL::Comparison_result | compare_y_to_right (const Circular_arc_2< CircularKernel > &ca1, const Circular_arc_2< CircularKernel > &ca2, Circular_arc_point_2< CircularKernel > &p) |
bool | is_finite (double x) |
bool | is_finite (float x) |
bool | is_finite (long double x) |
OutputIterator | compute_roots_of_2 (const RT &a, const RT &b, const RT &c, OutputIterator oit) |
Root_of_traits< RT >::Root_of_2 | make_root_of_2 (const RT &a, const RT &b, const RT &c, bool s) |
Root_of_traits< RT >::Root_of_2 | make_root_of_2 (RT alpha, RT beta, RT gamma) |
Root_of_traits< RT >::Root_of_2 | make_sqrt (const RT &x) |
Rational | simplest_rational_in_interval (double d1, double d2) |
Rational | to_rational (double d) |
bool | is_valid (const T &x) |
T | max (const T &x, const T &y) |
T | min (const T &x, const T &y) |
void | hilbert_sort (RandomAccessIterator begin, RandomAccessIterator end, const Traits &traits=Default_traits, PolicyTag policy=Default_policy) |
void | spatial_sort (RandomAccessIterator begin, RandomAccessIterator end, const Traits &traits=Default_traits, PolicyTag policy=Default_policy, std::ptrdiff_t threshold_hilbert=default, std::ptrdiff_t threshold_multiscale=default, double ratio=default) |
template<class CDT , class Criteria > | |
void | refine_Delaunay_mesh_2 (CDT &t, const Criteria &criteria=Criteria()) |
Refines the default domain defined by a constrained Delaunay triangulation without seeds into a mesh satisfying the criteria defined by the traits criteria . More... | |
template<class CDT , class Criteria , class InputIterator > | |
void | refine_Delaunay_mesh_2 (CDT &t, InputIterator begin, InputIterator end, const Criteria &criteria=Criteria(), bool mark=false) |
Refines the default domain defined by a constrained Delaunay triangulation into a mesh satisfying the criteria defined by the traits criteria .The sequence [begin, end) gives a set of seeds points, that defines the domain to be meshed as follows. More... | |
template<class CDT > | |
void | make_conforming_Delaunay_2 (CDT &t) |
Refines the constrained Delaunay triangulation t into a conforming Delaunay triangulation. More... | |
template<class CDT > | |
void | make_conforming_Gabriel_2 (CDT &t) |
Refines the constrained Delaunay triangulation t into a conforming Gabriel triangulation. More... | |