\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.4 - 2D and 3D Linear Geometry Kernel
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CGAL::side_of_oriented_circle()

See Also
CGAL::side_of_bounded_circle()

Functions

template<typename Kernel >
Oriented_side CGAL::side_of_oriented_circle (const CGAL::Point_2< Kernel > &p, const CGAL::Point_2< Kernel > &q, const CGAL::Point_2< Kernel > &r, const CGAL::Point_2< Kernel > &test)
 returns the relative position of point test to the oriented circle defined by p, q and r. More...
 

Function Documentation

template<typename Kernel >
Oriented_side CGAL::side_of_oriented_circle ( const CGAL::Point_2< Kernel > &  p,
const CGAL::Point_2< Kernel > &  q,
const CGAL::Point_2< Kernel > &  r,
const CGAL::Point_2< Kernel > &  test 
)

returns the relative position of point test to the oriented circle defined by p, q and r.

The order of the points p, q and r is important, since it determines the orientation of the implicitly constructed circle.

If p, q and r are collinear, the circle degenerates in a line. CGAL::ON_ORIENTED_BOUNDARY is returned if test is also collinear or if two points are identical, otherwise, side_of_oriented_circle(r, q, test, p) is returned.

#include <CGAL/global_functions.h>