CGAL 4.4 - 2D Minkowski Sums
|
A model of the PolygonConvexDecomposition_2
concept is capable of decomposing an input polygon \( P\) into a set of convex sub-polygons \( P_1, \ldots, P_k\), such that \( \cup_{i=1}^{k}{P_k} = P\).
CGAL::Small_side_angle_bisector_decomposition_2<Kernel,Container>
CGAL::Optimal_convex_decomposition_2<Kernel,Container>
CGAL::Hertel_Mehlhorn_convex_decomposition_2<Kernel,Container>
CGAL::Greene_convex_decomposition_2<Kernel,Container
Types | |
typedef unspecified_type | Kernel |
the geometric kernel type. | |
typedef unspecified_type | Point_2 |
the point type, used to represent polygon vertices. | |
typedef unspecified_type | Polygon_2 |
the polygon type. | |
Creation | |
PolygonConvexDecomposition_2 () | |
default constructor. | |
Operations | |
template<class OutputIterator > | |
OutputIterator | operator() (const Polygon_2 &P, OutputIterator oi) const |
decomposes the input polygon P into convex sub-polygons, and writes them to the output iterator oi . More... | |
OutputIterator PolygonConvexDecomposition_2::operator() | ( | const Polygon_2 & | P, |
OutputIterator | oi | ||
) | const |
decomposes the input polygon P
into convex sub-polygons, and writes them to the output iterator oi
.
The value-type of the output iterator must be Polygon_2
. The function returns a past-the-end iterator for the convex sub-polygons.