CGAL 4.5.2 - Planar Parameterization of Triangulated Surface Meshes
|
The concept SparseLinearAlgebraTraits_d
is used to solve sparse linear systems A \( \times \) X = B.
OpenNL::DefaultLinearSolverTraits<COEFFTYPE, MATRIX, VECTOR, SOLVER>
in OpenNL package
OpenNL::SymmetricLinearSolverTraits<COEFFTYPE, MATRIX, VECTOR, SOLVER>
in OpenNL package
Concepts | |
concept | Matrix |
SparseLinearAlgebraTraits_d::Matrix is a concept of a sparse matrix class. More... | |
concept | Vector |
SparseLinearAlgebraTraits_d::Vector is a concept of a vector that can be multiplied by a sparse matrix. More... | |
Types | |
typedef unspecified_type | Matrix |
typedef unspecified_type | Vector |
typedef unspecified_type | NT |
Creation | |
SparseLinearAlgebraTraits_d () | |
Default constructor. | |
Operations | |
bool | linear_solver (const Matrix &A, const Vector &B, Vector &X, NT &D) |
Solve the sparse linear system A \( \times \) X = B. More... | |
bool SparseLinearAlgebraTraits_d::linear_solver | ( | const Matrix & | A, |
const Vector & | B, | ||
Vector & | X, | ||
NT & | D | ||
) |
Solve the sparse linear system A \( \times \) X = B.
Return true on success. The solution is then (1/D) \( \times \) X.
A.row_dimension()
== B.dimension()
A.column_dimension()
== X.dimension()