 CGAL 4.7 - Polynomial
PolynomialTraits_d::TranslateHomogeneous Concept Reference

Definition

Given numerator $$a$$ and denominator $$b$$ this AdaptableFunctor translates a PolynomialTraits_d::Polynomial_d $$p$$ with respect to one variable by $$a/b$$, that is, it computes $$b^{degree(p)}\cdot p(x+a/b)$$.

Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate homogeneous polynomial in one specific variable.

Refines:
Polynomial_d
PolynomialTraits_d

Types

typedef
PolynomialTraits_d::Polynomial_d
result_type

Operations

result_type operator() (PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Innermost_coefficient_type a, PolynomialTraits_d::Innermost_coefficient_type b)
Returns $$b^{degree(p)}\cdot p(x+a/b)$$, with respect to the outermost variable.

result_type operator() (PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Innermost_coefficient_type a, PolynomialTraits_d::Innermost_coefficient_type b, int i)
Same as first operator but for variable $$x_i$$. More...

Member Function Documentation

 result_type PolynomialTraits_d::TranslateHomogeneous::operator() ( PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Innermost_coefficient_type a, PolynomialTraits_d::Innermost_coefficient_type b, int i )

Same as first operator but for variable $$x_i$$.

Precondition
$$0 \leq i < d$$.