\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9 - 2D Generalized Barycentric Coordinates
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CGAL::Barycentric_coordinates::Discrete_harmonic_2< Traits > Class Template Reference

#include <CGAL/Barycentric_coordinates_2/Discrete_harmonic_2.h>

Definition

The class Discrete_harmonic_2 implements 2D discrete harmonic coordinates (.

[2],[8],[1] ). This class is parameterized by a traits class Traits, and it is used as a coordinate class to complete the class Generalized_barycentric_coordinates_2. For a polygon with three vertices (triangle) it is better to use the class Triangle_coordinates_2. Discrete harmonic coordinates can be computed exactly. By definition, they do not necesserily give positive values.

Template Parameters
Traitsmust be a model of the concepts BarycentricTraits_2 and PolygonTraits_2.
Is Model Of:
BarycentricCoordinates_2
Precondition
The provided polygon is strictly convex.
Examples:
Barycentric_coordinates_2/Discrete_harmonic_coordinates_example.cpp.

Types

typedef Traits::FT FT
 Number type.
 
typedef Traits::Point_2 Point_2
 Point type.