\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9 - Combinatorial Maps
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CombinatorialMapItems Concept Reference

Definition

The concept CombinatorialMapItems allows to customize a dD combinatorial map by choosing the type of darts, and by enabling and disabling some attributes. For that, it defines an inner class template named Dart_wrapper, with one template parameter, CMap, a model of the CombinatorialMap concept. This inner class must define two types: Dart and Attributes.

Has Models:
CGAL::Combinatorial_map_min_items<d>
See Also
CombinatorialMap
Dart

Example

The following examples show two possible models of the CombinatorialMapItems concept: the first one for a 4D combinatorial map without enabled attributes, the second one for a 3D combinatorial map with edge attributes enabled, and associated with a Cell_attribute containing an int.

struct Exemple_Item_4
{
template < class CMap >
struct Dart_wrapper
{
typedef CGAL::cpp11::tuple<> Attributes;
};
};
struct Exemple_Item_3
{
template < class CMap >
struct Dart_wrapper
{
typedef CGAL::Cell_attribute<CMap, int> Edge_attrib;
};
};

Public Types

template<typename CMap >
using Dart_wrapper = unspecified_type
 Wrapper class defining type of darts and types of attributes. More...
 

Member Typedef Documentation

template<typename CMap >
using CombinatorialMapItems::Dart_wrapper = unspecified_type

Wrapper class defining type of darts and types of attributes.

The class Dart_wrapper<CMap> must provide:

  • Dart_wrapper<CMap>::Dart, the type of dart, a model of the Dart concept.
  • Dart_wrapper<CMap>::Attributes The tuple of attributes, containing at most CMap::dimension+1 types (one for each possible cell of the combinatorial map). Each type of the tuple must be either a model of the CellAttribute concept or void. The first type corresponds to 0-attributes, the second to 1-attributes and so on. If the \( i^{\mbox{th}}\) type in the tuple is void, (i-1)-attributes are disabled. Otherwise, (i-1)-attributes are enabled and have the given type. If the size of the tuple is k, with k<CMap::dimension+1, \( \forall\)i: k \( \leq\)i \( \leq\)CMap::dimension, i-attributes are disabled.
Note
It can be implemented using a nested template class.