\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.9 - Combinatorial Maps
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages

Concepts

conceptCellAttribute
 The concept CellAttribute represents a non void attribute associated with a cell of a combinatorial map. It can keep a handle to one dart of its associated cell, and can contain any information. More...
 
conceptCombinatorialMap
 The concept CombinatorialMap defines a d-dimensional combinatorial map. More...
 
conceptCombinatorialMapItems
 The concept CombinatorialMapItems allows to customize a dD combinatorial map by choosing the type of darts, and by enabling and disabling some attributes. For that, it defines an inner class template named Dart_wrapper, with one template parameter, CMap, a model of the CombinatorialMap concept. This inner class must define two types: Dart and Attributes. More...
 
conceptDart
 The concept Dart defines a d-dimensional dart. A dart mainly stores handles to the darts linked with itself by \( \beta_i\), \( \forall\)i, 0 \( \leq\)i \( \leq\)d. Moreover, it stores also handles to each non void attribute associated with itself. More...