\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0.2 - 2D and 3D Linear Geometry Kernel
Is Model Relationships
Class CGAL::Aff_transformation_2< Kernel >
Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable
Class CGAL::Aff_transformation_3< Kernel >
Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable
Class CGAL::Bbox_2
Hashable
Class CGAL::Bbox_3
Hashable
Class CGAL::Cartesian< FieldNumberType >
Kernel
Class CGAL::Circle_2< Kernel >

Kernel::Circle_2

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable

Class CGAL::Circle_3< Kernel >
Kernel::Circle_3
Class CGAL::Direction_2< Kernel >
Kernel::Direction_2
Class CGAL::Direction_3< Kernel >
Kernel::Direction_3
Class CGAL::Exact_predicates_exact_constructions_kernel
Kernel
Class CGAL::Exact_predicates_exact_constructions_kernel_with_kth_root
Kernel
Class CGAL::Exact_predicates_exact_constructions_kernel_with_root_of
Kernel
Class CGAL::Exact_predicates_exact_constructions_kernel_with_sqrt
Kernel
Class CGAL::Exact_predicates_inexact_constructions_kernel
Kernel
Class CGAL::Filtered_kernel< CK >
Kernel
Class CGAL::Filtered_kernel_adaptor< CK >
Kernel
Class CGAL::Homogeneous< RingNumberType >
Kernel
Class CGAL::Iso_cuboid_3< Kernel >

Kernel::IsoCuboid_3

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable

Class CGAL::Iso_rectangle_2< Kernel >

Kernel::IsoRectangle_2

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable

Class CGAL::Line_2< Kernel >
Kernel::Line_2
Class CGAL::Line_3< Kernel >
Kernel::Line_3
Class CGAL::Plane_3< Kernel >
Kernel::Plane_3
Class CGAL::Point_2< Kernel >

Kernel::Point_2

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable

Class CGAL::Point_3< Kernel >

Kernel::Point_3

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable

Class CGAL::Projection_traits_xy_3< K >

The class is a model of several 2D triangulation traits class concepts, except that it does not provide the type and constructors required to build the dual Voronoi diagram.

PolygonTraits_2

ConvexHullTraits_2

TriangulationTraits_2

DelaunayTriangulationTraits_2

ConstrainedTriangulationTraits_2

ConvexHullTraits_2

DelaunayMeshTraits_2

Class CGAL::Ray_2< Kernel >
Kernel::Ray_2
Class CGAL::Ray_3< Kernel >
Kernel::Ray_3
Class CGAL::Segment_2< Kernel >

Kernel::Segment_2

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable

Class CGAL::Segment_3< Kernel >

Kernel::Segment_3

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable

Class CGAL::Simple_cartesian< FieldNumberType >
Kernel
Class CGAL::Simple_homogeneous< RingNumberType >
Kernel
Class CGAL::Sphere_3< Kernel >

Kernel::Sphere_3

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable

Class CGAL::Tetrahedron_3< Kernel >
Kernel::Tetrahedron_3
Class CGAL::Triangle_2< Kernel >
Kernel::Triangle_2
Class CGAL::Triangle_3< Kernel >
Kernel::Triangle_3
Class CGAL::Vector_2< Kernel >

Kernel::Vector_2

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable

Class CGAL::Vector_3< Kernel >

Kernel::Vector_3

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable

Class CGAL::Weighted_point_2< Kernel >

Kernel::WeightedPoint_2

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable

Class CGAL::Weighted_point_3< Kernel >

Kernel::WeightedPoint_3

Hashable if Kernel is a cartesian kernel and if Kernel::FT is Hashable