\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 5.0 - Modular Arithmetic
ModularTraits::ModularImage Concept Reference

Definition

This AdaptableUnaryFunction computes the modular image of the given value with respect to a homomorphism \( \varphi\) from the ModularTraits::Type into the ModularTraits::Residue_type.

The homomorphism preserves the mapping of int into both types , i.e., \( \varphi(\mathrm{Type}(i)) == \mathrm{Residue\_type}(i)\).

Refines:
AdaptableUnaryFunction
See also
ModularTraits

Types

typedef ModularTraits::Residue_type result_type
 
typedef ModularTraits::Type argument_type
 
result_type operator() (const argument_type &x)
 computes \( \varphi(x)\).