CGAL 5.1.5 - Geometric Object Generators
CGAL::Random_points_in_triangle_2< Point_2, Creator > Class Template Reference

#include <CGAL/point_generators_2.h>

Definition

Types

typedef std::input_iterator_tag iterator_category
 
typedef Point_2 value_type
 
typedef std::ptrdiff_t difference_type
 
const typedef Point_2pointer
 
const typedef Point_2reference
 
 Random_points_in_triangle_2 (Point_2 &p, Point_2 &q, Point_2 &r, Random &rnd=get_default_random())
 Creates an input iterator g generating points of type Point_2 uniformly distributed inside the triangle with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \). More...
 
 Random_points_in_triangle_2 (Triangle_2 &t, Random &rnd=get_default_random())
 Creates an input iterator g generating points of type Point_2 uniformly distributed inside a triangle \(t\) with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \). More...
 

Constructor & Destructor Documentation

◆ Random_points_in_triangle_2() [1/2]

template<typename Point_2 , typename Creator >
CGAL::Random_points_in_triangle_2< Point_2, Creator >::Random_points_in_triangle_2 ( Point_2 p,
Point_2 q,
Point_2 r,
Random rnd = get_default_random() 
)

Creates an input iterator g generating points of type Point_2 uniformly distributed inside the triangle with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \).

Two random numbers are needed from rnd for each point.

◆ Random_points_in_triangle_2() [2/2]

template<typename Point_2 , typename Creator >
CGAL::Random_points_in_triangle_2< Point_2, Creator >::Random_points_in_triangle_2 ( Triangle_2 t,
Random rnd = get_default_random() 
)

Creates an input iterator g generating points of type Point_2 uniformly distributed inside a triangle \(t\) with vertices \( p, q \) and \( r \), i.e., \(*g = \alpha p + \beta q + \gamma r \), for some \( \alpha, \beta, \gamma \in [0, 1] \) and \( \alpha + \beta + \gamma = 1 \).

Two random numbers are needed from rnd for each point.