CGAL 5.1 - 2D Circular Geometry Kernel
CircularKernel::ConstructLineArc_2 Concept Reference

## Operations

A model of this concept must provide:

CircularKernel::Line_arc_2 operator() (const CircularKernel::Line_2 &l, const CircularKernel::Circular_arc_point_2 &p1, const CircularKernel::Circular_arc_point_2 &p2)
Constructs the line segment supported by l, whose source is p1 and whose target is p2. More...

CircularKernel::Line_arc_2 operator() (const CircularKernel::Segment_2 &s)

CircularKernel::Line_arc_2 operator() (const CircularKernel::Point_2 &p1, const CircularKernel::Point_2 &p2)

CircularKernel::Line_arc_2 operator() (const CircularKernel::Line_2 &l, const CircularKernel::Circle_2 &c1, bool b1, const CircularKernel::Circle_2 &c2, bool b2)
Constructs the line segment whose supporting line is l, whose source endpoint is the $$b_1^{th}$$ intersection of l with c1, and whose target endpoint is the $$b_2^{th}$$ intersection of l and c2, where intersections are ordered lexicographically. More...

CircularKernel::Line_arc_2 operator() (const CircularKernel::Line_2 &l, const CircularKernel::Line_2 &l1, const CircularKernel::Line_2 &l2)
Same, for intersections defined by lines instead of circles.

## ◆ operator()() [1/2]

 CircularKernel::Line_arc_2 CircularKernel::ConstructLineArc_2::operator() ( const CircularKernel::Line_2 & l, const CircularKernel::Circular_arc_point_2 & p1, const CircularKernel::Circular_arc_point_2 & p2 )

Constructs the line segment supported by l, whose source is p1 and whose target is p2.

Precondition
p1 and p2 lie on l.

## ◆ operator()() [2/2]

 CircularKernel::Line_arc_2 CircularKernel::ConstructLineArc_2::operator() ( const CircularKernel::Line_2 & l, const CircularKernel::Circle_2 & c1, bool b1, const CircularKernel::Circle_2 & c2, bool b2 )

Constructs the line segment whose supporting line is l, whose source endpoint is the $$b_1^{th}$$ intersection of l with c1, and whose target endpoint is the $$b_2^{th}$$ intersection of l and c2, where intersections are ordered lexicographically.

Precondition
l intersects both c1 and c2, and the arc defined by the intersections has non-zero length.