CGAL 5.3 - 2D Arrangements
|
#include <CGAL/Arr_rational_function_traits_2.h>
Functor to construct a X_monotone_curve_2
.
To enable caching the class is not default constructible and must be obtained via the function construct_x_monotone_curve_2_object()
, which is a member of the traits.
Types | |
typedef AlgebraicKernel_d_1::Polynomial_1 | Polynomial_1 |
typedef AlgebraicKernel_d_1::Algebraic_real_1 | Algebraic_real_1 |
typedef Arr_rational_function_traits_2< AlgebraicKernel_d_1 >::X_monotone_curve_2 | result_type |
typedef Polynomial_1 | argument_type |
typedef Polynomial_1 | first_argument_type |
typedef Polynomial_1 | second_argument_type |
Operations | |
X_monotone_curve_2 | operator() (Polynomial_1 P) const |
Constructs an \( x\)-monotone curve supported by the polynomial function \( y = P(x)\). | |
X_monotone_curve_2 | operator() (Polynomial_1 P, const Algebraic_real_1 &x, bool right) const |
Constructs an \( x\)-monotone curve supported by the polynomial function \( y = P(x)\). More... | |
X_monotone_curve_2 | operator() (Polynomial_1 P, const Algebraic_real_1 &lower, const Algebraic_real_1 &upper) |
Constructs an \( x\)-monotone curve supported by the polynomial function \( y = P(x)\). More... | |
const X_monotone_curve_2 | operator() (Polynomial_1 P, Polynomial_1 Q) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\). More... | |
const X_monotone_curve_2 | operator() (Polynomial_1 P, Polynomial_1 Q, const Algebraic_real_1 &x, bool right) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\). More... | |
const X_monotone_curve_2 | operator() (Polynomial_1 P, Polynomial_1 Q, const Algebraic_real_1 &lower, const Algebraic_real_1 &upper) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\). More... | |
template<typename InputIterator > | |
const X_monotone_curve_2 | operator() (InputIterator begin, InputIterator end) const |
Constructs an \( x\)-monotone curve supported by the polynomial function \( y = P(x)\), where the coefficients of \( P\) are given in the range [begin,end) . | |
template<typename InputIterator > | |
X_monotone_curve_2 | operator() (InputIterator begin, InputIterator end, const Algebraic_real_1 &x, bool right) const |
Constructs an \( x\)-monotone curve supported by the polynomial function \( y = P(x)\), where the coefficients of \( P\) are given in the range [begin,end) . More... | |
template<typename InputIterator > | |
X_monotone_curve_2 | operator() (InputIterator begin, InputIterator end const Algebraic_real_1 &lower, const Algebraic_real_1 &upper) |
Constructs an \( x\)-monotone curve supported by the polynomial function \( y = P(x)\), where the coefficients of \( P\) are given in the range [begin,end) . More... | |
template<typename InputIterator > | |
const X_monotone_curve_2 | operator() (InputIterator begin_numer, InputIterator end_numer, InputIterator begin_denom, InputIterator end_denom) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\), where the coefficients of \( P\) and \( Q\) are given in the ranges [begin_numer,end_numer) and [begin_denom,end_denom) , respectively. More... | |
template<typename InputIterator > | |
const X_monotone_curve_2 | operator() (InputIterator begin_numer, InputIterator end_numer, InputIterator begin_denom, InputIterator end_denom, const Algebraic_real_1 &x, bool right) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\), where the coefficients of \( P\) and \( Q\) are given in the ranges [begin_numer,end_numer) and [begin_denom,end_denom) , respectively. More... | |
template<typename InputIterator > | |
const X_monotone_curve_2 | operator() (InputIterator begin_numer, InputIterator end_numer, InputIterator begin_denom, InputIterator end_denom, const Algebraic_real_1 &lower, const Algebraic_real_1 &upper) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\), where the coefficients of \( P\) and \( Q\) are given in the ranges [begin_numer,end_numer) and [begin_denom,end_denom) , respectively. More... | |
X_monotone_curve_2 CGAL::Arr_rational_function_traits_2< AlgebraicKernel_d_1 >::Construct_x_monotone_curve_2::operator() | ( | Polynomial_1 | P, |
const Algebraic_real_1 & | x, | ||
bool | right | ||
) | const |
Constructs an \( x\)-monotone curve supported by the polynomial function \( y = P(x)\).
The function is defined over the interval \( [x,+\infty)\) if \( right\) is true and \( (-\infty,x]\) otherwise.
X_monotone_curve_2 CGAL::Arr_rational_function_traits_2< AlgebraicKernel_d_1 >::Construct_x_monotone_curve_2::operator() | ( | Polynomial_1 | P, |
const Algebraic_real_1 & | lower, | ||
const Algebraic_real_1 & | upper | ||
) |
Constructs an \( x\)-monotone curve supported by the polynomial function \( y = P(x)\).
The function is defined over the interval \( [lower,upper]\).
const X_monotone_curve_2 CGAL::Arr_rational_function_traits_2< AlgebraicKernel_d_1 >::Construct_x_monotone_curve_2::operator() | ( | Polynomial_1 | P, |
Polynomial_1 | Q | ||
) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\).
const X_monotone_curve_2 CGAL::Arr_rational_function_traits_2< AlgebraicKernel_d_1 >::Construct_x_monotone_curve_2::operator() | ( | Polynomial_1 | P, |
Polynomial_1 | Q, | ||
const Algebraic_real_1 & | x, | ||
bool | right | ||
) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\).
The function is defined over the interval \( I=[x,+\infty)\) if \( right\) is true and \( I=(-\infty,x]\) otherwise.
const X_monotone_curve_2 CGAL::Arr_rational_function_traits_2< AlgebraicKernel_d_1 >::Construct_x_monotone_curve_2::operator() | ( | Polynomial_1 | P, |
Polynomial_1 | Q, | ||
const Algebraic_real_1 & | lower, | ||
const Algebraic_real_1 & | upper | ||
) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\).
The function is defined over the interval \( I=[lower,upper]\).
X_monotone_curve_2 CGAL::Arr_rational_function_traits_2< AlgebraicKernel_d_1 >::Construct_x_monotone_curve_2::operator() | ( | InputIterator | begin, |
InputIterator | end, | ||
const Algebraic_real_1 & | x, | ||
bool | right | ||
) | const |
Constructs an \( x\)-monotone curve supported by the polynomial function \( y = P(x)\), where the coefficients of \( P\) are given in the range [begin,end)
.
The function is defined over the interval \( [x,+\infty)\) if \( right\) is true and \( (-\infty,x]\) otherwise.
X_monotone_curve_2 CGAL::Arr_rational_function_traits_2< AlgebraicKernel_d_1 >::Construct_x_monotone_curve_2::operator() | ( | InputIterator | begin, |
InputIterator end const Algebraic_real_1 & | lower, | ||
const Algebraic_real_1 & | upper | ||
) |
Constructs an \( x\)-monotone curve supported by the polynomial function \( y = P(x)\), where the coefficients of \( P\) are given in the range [begin,end)
.
The function is defined over the interval \( [lower,upper]\).
const X_monotone_curve_2 CGAL::Arr_rational_function_traits_2< AlgebraicKernel_d_1 >::Construct_x_monotone_curve_2::operator() | ( | InputIterator | begin_numer, |
InputIterator | end_numer, | ||
InputIterator | begin_denom, | ||
InputIterator | end_denom | ||
) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\), where the coefficients of \( P\) and \( Q\) are given in the ranges [begin_numer,end_numer)
and [begin_denom,end_denom)
, respectively.
const X_monotone_curve_2 CGAL::Arr_rational_function_traits_2< AlgebraicKernel_d_1 >::Construct_x_monotone_curve_2::operator() | ( | InputIterator | begin_numer, |
InputIterator | end_numer, | ||
InputIterator | begin_denom, | ||
InputIterator | end_denom, | ||
const Algebraic_real_1 & | x, | ||
bool | right | ||
) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\), where the coefficients of \( P\) and \( Q\) are given in the ranges [begin_numer,end_numer)
and [begin_denom,end_denom)
, respectively.
The function is defined over the interval \( I=[x,+\infty)\) if \( right\) is true and \( I=(-\infty,x]\) otherwise.
const X_monotone_curve_2 CGAL::Arr_rational_function_traits_2< AlgebraicKernel_d_1 >::Construct_x_monotone_curve_2::operator() | ( | InputIterator | begin_numer, |
InputIterator | end_numer, | ||
InputIterator | begin_denom, | ||
InputIterator | end_denom, | ||
const Algebraic_real_1 & | lower, | ||
const Algebraic_real_1 & | upper | ||
) |
Constructs an \( x\)-monotone curve supported by the rational function \( y = P(x)/Q(x)\), where the coefficients of \( P\) and \( Q\) are given in the ranges [begin_numer,end_numer)
and [begin_denom,end_denom)
, respectively.
The function is defined over the interval \( I=[lower,upper]\).