CGAL 5.5.1 - Bounding Volumes
|
The concept RectangularPCenterTraits_2
defines types and operations needed to compute rectilinear p-centers of a planar point set using the function CGAL::rectangular_p_center_2()
.
CGAL::rectangular_p_center_2()
Types | |
typedef unspecified_type | FT |
model for FieldNumberType . | |
typedef unspecified_type | Point_2 |
model for Kernel::Point_2 . | |
typedef unspecified_type | Iso_rectangle_2 |
model for Kernel::Iso_rectangle_2 . | |
typedef unspecified_type | Less_x_2 |
model for Kernel::Less_x_2 . | |
typedef unspecified_type | Less_y_2 |
model for Kernel::Less_y_2 . | |
typedef unspecified_type | Construct_vertex_2 |
model for Kernel::Construct_vertex_2 . | |
typedef unspecified_type | Construct_iso_rectangle_2 |
model for Kernel::Construct_iso_rectangle_2 . | |
typedef unspecified_type | Signed_x_distance_2 |
adaptable binary function class: Point_2 \times Point_2 \rightarrow FT returns the signed distance of two points' x-coordinates. | |
typedef unspecified_type | Signed_y_distance_2 |
adaptable binary function class: Point_2 \times Point_2 \rightarrow FT returns the signed distance of two points' y-coordinates. | |
typedef unspecified_type | Infinity_distance_2 |
adaptable binary function class: Point_2 \times Point_2 \rightarrow FT returns the ||\cdot||_{\infty} distance of two points. | |
typedef unspecified_type | Signed_infinity_distance_2 |
adaptable binary function class: Point_2 \times Point_2 \rightarrow FT returns the signed ||\cdot||_{\infty} distance of two points. | |
typedef unspecified_type | Construct_point_2_below_left_implicit_point_2 |
3-argument function class: Point_2 \times Point_2 \times FT \rightarrow Point_2 . More... | |
typedef unspecified_type | Construct_point_2_below_right_implicit_point_2 |
3-argument function class: Point_2 \times Point_2 \times FT \rightarrow Point_2 . More... | |
typedef unspecified_type | Construct_point_2_above_right_implicit_point_2 |
3-argument function class: Point_2 \times Point_2 \times FT \rightarrow Point_2 . More... | |
typedef unspecified_type | Construct_point_2_above_left_implicit_point_2 |
3-argument function class: Point_2 \times Point_2 \times FT \rightarrow Point_2 . More... | |
Operations | |
For every function class listed above there is a member function to fetch the corresponding function object. | |
Inf_distance_2 | inf_distance_2_object () const |
Signed_inf_distance_2 | signed_inf_distance_2_object () const |
Construct_vertex_2 | construct_vertex_2_object () const |
Construct_iso_rectangle_2 | construct_iso_rectangle_2_object () const |
Construct_iso_rectangle_2_below_left_point_2 | construct_iso_rectangle_2_below_left_point_2_object () const |
Construct_iso_rectangle_2_above_left_point_2 | construct_iso_rectangle_2_above_left_point_2_object () const |
Construct_iso_rectangle_2_below_right_point_2 | construct_iso_rectangle_2_below_right_point_2_object () const |
Construct_iso_rectangle_2_above_right_point_2 | construct_iso_rectangle_2_above_right_point_2_object () const |
3-argument function class: Point_2
\times Point_2
\times FT
\rightarrow Point_2
.
For arguments (p,\,q,\,r) it returns the upper-left corner of the iso-oriented square with sidelength r and lower-right corner at the intersection of the vertical line through p and the horizontal line through q.
3-argument function class: Point_2
\times Point_2
\times FT
\rightarrow Point_2
.
For arguments (p,\,q,\,r) it returns the upper-right corner of the iso-oriented square with sidelength r and lower-left corner at the intersection of the vertical line through p and the horizontal line through q.
3-argument function class: Point_2
\times Point_2
\times FT
\rightarrow Point_2
.
For arguments (p,\,q,\,r) it returns the lower-left corner of the iso-oriented square with sidelength r and upper-right corner at the intersection of the vertical line through p and the horizontal line through q.
3-argument function class: Point_2
\times Point_2
\times FT
\rightarrow Point_2
.
For arguments (p,\,q,\,r) it returns the lower-right corner of the iso-oriented square with sidelength r and upper-left corner at the intersection of the vertical line through p and the horizontal line through q.