CGAL 5.5 - dD Triangulations
CGAL::Regular_triangulation< RegularTriangulationTraits_, TriangulationDataStructure_ > Class Template Reference

#include <CGAL/Regular_triangulation.h>

Inherits from

CGAL::Triangulation< Regular_triangulation_traits_adapter< RegularTriangulationTraits_ >, TriangulationDataStructure_ >.

Definition

This class is used to maintain the regular triangulation – also known as weighted Delaunay triangulation – of a set of weighted points in \( \mathbb{R}^D \).

The maximal dimension \( D\) can be specified at compile-time or run-time. It should be kept reasonably small – see the performance section in the user manual for what reasonable means.

Warning
The removal of points is not supported yet.
Template Parameters
RegularTriangulationTraits_is the geometric traits class that provides the geometric types and predicates needed by regular triangulations. RegularTriangulationTraits_ must be a model of the concept RegularTriangulationTraits.
TriangulationDataStructure_must be a model of the concept TriangulationDataStructure. This model is used to store the faces of the triangulation. The parameter TriangulationDataStructure_ defaults to Triangulation_data_structure whose template parameters are instantiated as follows:

Regular_triangulation can be defined by specifying only the first parameter, or by using the tag CGAL::Default as the second parameter.

See also
Delaunay_triangulation
Triangulation_data_structure
Regular_triangulation_traits_adapter
Examples:
regular_triangulation.cpp.

Types

typedef RegularTriangulationTraits_::Weighted_point_d Weighted_point
 A point in Euclidean space with an associated weight.
 

Creation

 Regular_triangulation (int dim, const Geom_traits &gt=Geom_traits())
 Instantiates a regular triangulation with one vertex (the vertex at infinity). More...
 

Point Insertion

Vertex_handle insert (const Weighted_point &p, Full_cell_handle hint=Full_cell_handle())
 Inserts weighted point p in the triangulation and returns the corresponding vertex. More...
 
Vertex_handle insert (const Weighted_point &p, Vertex_handle hint)
 Same as above but uses a vertex as starting place for the search.
 
Vertex_handle insert (const Weighted_point &p, Locate_type lt, const Face &f, const Facet &ft, Full_cell_handle c)
 Inserts weighted point p in the triangulation. More...
 
template<typename ForwardIterator >
std::ptrdiff_t insert (ForwardIterator s, ForwardIterator e)
 Inserts the weighted points found in range [s,e) in the regular triangulation. More...
 
Vertex_handle insert_if_in_star (const Weighted_point &p, Vertex_handle star_center, Full_cell_handle start=Full_cell_handle())
 inserts the weighted point p in the triangulation on the condition that the vertex star_center appears in the conflict zone of p (that is, p would appear in the star of star_center after the insertion). More...
 
Vertex_handle insert_if_in_star (const Weighted_point &p, Vertex_handle star_center, Vertex_handle hint)
 Same as the above insert_if_in_star(), but uses a vertex as starting place for the search.
 
Vertex_handle insert_if_in_star (const Weighted_point &p, Vertex_handle star_center, Locate_type lt, const Face &f, const Facet &ft, Full_cell_handle s)
 inserts the weighted point p in the triangulation. More...
 

Queries

bool is_in_conflict (const Weighted_point &p, Full_cell_const_handle c) const
 Returns true if and only if the point p is in conflict with full cell c (A weighted point p is said to be in conflict with a cell c if it has a negative power distance to the power sphere of c.)
 
template<typename OutputIterator >
Facet compute_conflict_zone (const Weighted_point &p, Full_cell_handle c, OutputIterator out) const
 Outputs handles to the full cells in conflict with point p into the OutputIterator out. More...
 

Access Functions

size_type number_of_vertices () const
 Returns the number of finite vertices that are not hidden.
 
size_type number_of_hidden_vertices () const
 Returns the number of hidden vertices.
 

Additional Inherited Members

- Public Types inherited from CGAL::Triangulation< Regular_triangulation_traits_adapter< RegularTriangulationTraits_ >, TriangulationDataStructure_ >
enum  Locate_type
 Used by Triangulation to specify which case occurs when locating a point in the triangulation.
 
typedef TriangulationDataStructure_::Vertex_handle Vertex_handle
 handle to a a vertex
 
typedef TriangulationDataStructure_::Vertex_const_handle Vertex_const_handle
 const handle to a a vertex
 
typedef TriangulationDataStructure_::Vertex_iterator Vertex_iterator
 iterator over all vertices (including the infinite one)
 
typedef TriangulationDataStructure_::Vertex_const_iterator Vertex_const_iterator
 const iterator over all vertices (including the infinite one)
 
typedef unspecified_type Finite_vertex_iterator
 iterator over finite vertices
 
typedef unspecified_type Finite_vertex_const_iterator
 const iterator over finite vertices
 
typedef TriangulationDataStructure_::Full_cell_handle Full_cell_handle
 handle to a full cell
 
typedef TriangulationDataStructure_::Full_cell_const_handle Full_cell_const_handle
 const handle to a full cell
 
typedef TriangulationDataStructure_::Full_cell_iterator Full_cell_iterator
 iterator over all full cells (including the infinite ones)
 
typedef TriangulationDataStructure_::Full_cell_const_iterator Full_cell_const_iterator
 const iterator over all full cells (including the infinite ones)
 
typedef unspecified_type Finite_full_cell_iterator
 iterator over finite full cells
 
typedef unspecified_type Finite_full_cell_const_iterator
 const iterator over finite full cells
 
typedef TriangulationDataStructure_::Facet_iterator Facet_iterator
 iterator over all facets (including the infinite ones)
 
typedef unspecified_type Finite_facet_iterator
 iterator over finite facets
 
typedef TriangulationDataStructure_::size_type size_type
 size type (an unsigned integral type)
 
typedef TriangulationDataStructure_::difference_type difference_type
 difference type (a signed integral type)
 
typedef Regular_triangulation_traits_adapter< RegularTriangulationTraits_ > Geom_traits
 Type for the model of the TriangulationTraits_ concept.
 
typedef Regular_triangulation_traits_adapter< RegularTriangulationTraits_ > ::Point_d Point
 A point in Euclidean space. More...
 
typedef Regular_triangulation_traits_adapter< RegularTriangulationTraits_ > ::Dimension Maximal_dimension
 This indicates whether the maximal dimension is static (i.e. if the type of Maximal_dimension is CGAL::Dimension_tag<int dim>) or dynamic (i.e. if the type of Maximal_dimension is CGAL::Dynamic_dimension_tag). More...
 
typedef TriangulationDataStructure_ Triangulation_ds
 The second template parameter: the triangulation data structure.
 
typedef TriangulationDataStructure_::Vertex Vertex
 A model of the concept TriangulationVertex.
 
typedef TriangulationDataStructure_::Full_cell Full_cell
 A model of the concept TriangulationFullCell.
 
typedef TriangulationDataStructure_::Facet Facet
 The facet class.
 
typedef TriangulationDataStructure_::Face Face
 A model of the concept TriangulationDSFace.
 
- Public Member Functions inherited from CGAL::Triangulation< Regular_triangulation_traits_adapter< RegularTriangulationTraits_ >, TriangulationDataStructure_ >
 Triangulation (int dim, const Geom_traits &gt=Geom_traits())
 Instantiates a triangulation with one vertex (the vertex at infinity). More...
 
 Triangulation (const Triangulation &t2)
 The copy constructor.
 
const Triangulation_dstds () const
 Returns a const reference to the underlying triangulation data structure.
 
Triangulation_dstds ()
 This is an advanced function. More...
 
const Geom_traitsgeom_traits () const
 Returns a const reference to the geometric traits instance.
 
int maximal_dimension () const
 Returns the maximal dimension of the full dimensional cells that can be stored in the triangulation.
 
int current_dimension () const
 Returns the dimension of the triangulation (as an embedded manifold).
 
bool empty () const
 Returns true if the triangulation has no finite vertex. More...
 
size_type number_of_vertices () const
 Returns the number of finite vertices in the triangulation.
 
size_type number_of_full_cells () const
 Returns the number of full cells of maximal dimension in the triangulation (full cells incident to the vertex at infinity are counted).
 
Vertex_handle infinite_vertex () const
 Returns a handle to the vertex at infinity.
 
Full_cell_handle infinite_full_cell () const
 Returns a handle to some full cell incident to the vertex at infinity.
 
size_type number_of_finite_full_cells () const
 Returns the number of full cells of maximal dimension that are not incident to the vertex at infinity.
 
bool is_infinite (Vertex_handle v) const
 Returns true if and only if the vertex v is the infinite vertex.
 
bool is_infinite (Full_cell_handle c) const
 Returns true if and only if c is incident to the infinite vertex.
 
bool is_infinite (const Facet &ft) const
 Returns true if and only if facet ft is incident to the infinite vertex.
 
bool is_infinite (const Face &f) const
 Returns true if and only if the face f is incident to the infinite vertex.
 
Full_cell_handle full_cell (const Facet &f) const
 Returns a full cell containing the facet f
 
int index_of_covertex (const Facet &f) const
 Returns the index of the vertex of the full cell c=tr.full_cell(f) which does not belong to c.
 
Vertex_iterator vertices_begin ()
 The first vertex of tr.
 
Vertex_iterator vertices_end ()
 The beyond vertex of tr.
 
Finite_vertex_iterator finite_vertices_begin ()
 The first finite vertex of tr.
 
Finite_vertex_iterator finite_vertices_end ()
 The beyond finite vertex of tr.
 
Full_cell_iterator full_cells_begin ()
 The first full cell of tr.
 
Full_cell_iterator full_cells_end ()
 The beyond full cell of tr.
 
Finite_full_cell_iterator finite_full_cells_begin ()
 The first finite full cell of tr.
 
Finite_full_cell_iterator finite_full_cells_end ()
 The beyond finite full cell of tr.
 
Facet_iterator facets_begin ()
 Iterator to the first facet of the triangulation.
 
Facet_iterator facets_end ()
 Iterator to the beyond facet of the triangulation.
 
Finite_facet_iterator finite_facets_begin ()
 Iterator to the first finite facet of the triangulation.
 
Finite_facet_iterator finite_facets_end ()
 Iterator to the beyond finite facet of the triangulation.
 
Full_cell_handle locate (const Point &query, Full_cell_const_handle hint=Full_cell_handle()) const
 The optional argument hint is used as a starting place for the search. More...
 
Full_cell_handle locate (const Point &query, Vertex_handle hint) const
 Same as above but hint is a vertex and not a full cell.
 
Full_cell_handle locate (const Point &query, Locate_type &loc_type, Face &f, Facet &ft, Full_cell_handle hint=Full_cell_handle()) const
 The optional argument hint is used as a starting place for the search. More...
 
Full_cell_handle locate (const Point &query, Locate_type &loc_type, Face &f, Vertex_handle hint) const
 Same as above but hint, the starting place for the search, is a vertex. More...
 
Vertex_handle collapse_face (const Point &p, const Face &f)
 Contracts the Face f to a single vertex at position p. More...
 
size_type insert (ForwardIterator s, ForwardIterator e)
 Inserts the points found in range [s,e) in the triangulation. More...
 
Vertex_handle insert (const Point &p, Full_cell_handle hint=Full_cell_handle())
 Inserts point p in the triangulation. More...
 
Vertex_handle insert (const Point &p, Vertex_handle hint)
 Same as above but uses a vertex hint as the starting place for the search.
 
Vertex_handle insert (const Point &p, Locate_type loc_type, Face &f, Facet &ft, Full_cell_handle c)
 Inserts point p into the triangulation and returns a handle to the Vertex at that position. More...
 
Vertex_handle insert_in_hole (const Point &p, ForwardIterator s, ForwardIterator e, const Facet &ft, OutputIterator out)
 Removes the full cells in the range \( C=\)[s, e), inserts a vertex at position p and fills the hole by connecting each face of the boundary to p. More...
 
Vertex_handle insert_in_hole (const Point &p, ForwardIterator s, ForwardIterator e, const Facet &ft)
 Same as above, but the newly created full cells are not retrieved.
 
Vertex_handle insert_in_face (const Point &p, const Face &f)
 Inserts point p in the triangulation. More...
 
Vertex_handle insert_in_facet (const Point &p, const Facet &ft)
 Inserts point p in the triangulation. More...
 
Vertex_handle insert_in_full_cell (const Point &p, Full_cell_handle c)
 Inserts point p in the triangulation. More...
 
Vertex_handle insert_outside_convex_hull (const Point &, Full_cell_handle c)
 Inserts point p in the triangulation. More...
 
Vertex_handle insert_outside_affine_hull (const Point &)
 Inserts point p in the triangulation. More...
 
bool is_valid (bool verbose=false) const
 This is a function for debugging purpose. More...
 
bool are_incident_full_cells_valid (Vertex_const_handle v, bool verbose=false) const
 This is a function for debugging purpose. More...
 
std::istream & operator>> (std::istream &is, Triangulation &t)
 Reads the underlying combinatorial triangulation from is by calling the corresponding input operator of the triangulation data structure class (note that the infinite vertex is numbered 0), and the non-combinatorial information by calling the corresponding input operators of the vertex and the full cell classes (such as point coordinates), which are provided by overloading the stream operators of the vertex and full cell types. More...
 
std::ostream & operator<< (std::ostream &os, const Triangulation &t)
 Writes the triangulation t into os.
 

Constructor & Destructor Documentation

◆ Regular_triangulation()

template<typename RegularTriangulationTraits_ , typename TriangulationDataStructure_ >
CGAL::Regular_triangulation< RegularTriangulationTraits_, TriangulationDataStructure_ >::Regular_triangulation ( int  dim,
const Geom_traits gt = Geom_traits() 
)

Instantiates a regular triangulation with one vertex (the vertex at infinity).

See the description of the inherited nested type Triangulation::Maximal_dimension for an explanation of the use of the parameter dim. The triangulation stores a copy of the geometric traits gt.

Member Function Documentation

◆ compute_conflict_zone()

template<typename RegularTriangulationTraits_ , typename TriangulationDataStructure_ >
template<typename OutputIterator >
Facet CGAL::Regular_triangulation< RegularTriangulationTraits_, TriangulationDataStructure_ >::compute_conflict_zone ( const Weighted_point p,
Full_cell_handle  c,
OutputIterator  out 
) const

Outputs handles to the full cells in conflict with point p into the OutputIterator out.

The full cell c is used as a starting point for gathering the full cells in conflict with p. A facet (cc,i) on the boundary of the conflict zone with cc in conflict is returned.

Precondition
c is in conflict with p and rt.current_dimension() \( \geq 1\).

◆ insert() [1/3]

template<typename RegularTriangulationTraits_ , typename TriangulationDataStructure_ >
Vertex_handle CGAL::Regular_triangulation< RegularTriangulationTraits_, TriangulationDataStructure_ >::insert ( const Weighted_point p,
Full_cell_handle  hint = Full_cell_handle() 
)

Inserts weighted point p in the triangulation and returns the corresponding vertex.

If this insertion creates a vertex, this vertex is returned.

If p coincides with an existing vertex and has a greater weight, then the existing weighted point becomes hidden and p replaces it as vertex of the triangulation.

If p coincides with an already existing vertex (both point and weights being equal), then this vertex is returned and the triangulation remains unchanged.

Otherwise if p does not appear as a vertex of the triangulation, then it is stored as a hidden point and this method returns the default constructed handle.

Prior to the actual insertion, p is located in the triangulation; hint is used as a starting place for locating p.

◆ insert() [2/3]

template<typename RegularTriangulationTraits_ , typename TriangulationDataStructure_ >
Vertex_handle CGAL::Regular_triangulation< RegularTriangulationTraits_, TriangulationDataStructure_ >::insert ( const Weighted_point p,
Locate_type  lt,
const Face f,
const Facet ft,
Full_cell_handle  c 
)

Inserts weighted point p in the triangulation.

Similar to the above insert() function, but takes as additional parameter the return values of a previous location query. See description of Triangulation::locate().

◆ insert() [3/3]

template<typename RegularTriangulationTraits_ , typename TriangulationDataStructure_ >
template<typename ForwardIterator >
std::ptrdiff_t CGAL::Regular_triangulation< RegularTriangulationTraits_, TriangulationDataStructure_ >::insert ( ForwardIterator  s,
ForwardIterator  e 
)

Inserts the weighted points found in range [s,e) in the regular triangulation.

Returns the difference between the number of vertices after and before the insertions (it may be negative due to hidden points). Note that this function is not guaranteed to insert the points following the order of ForwardIterator because spatial_sort() is used to improve efficiency.

Template Parameters
ForwardIteratormust be an input iterator with the value type Weighted_point.

◆ insert_if_in_star() [1/2]

template<typename RegularTriangulationTraits_ , typename TriangulationDataStructure_ >
Vertex_handle CGAL::Regular_triangulation< RegularTriangulationTraits_, TriangulationDataStructure_ >::insert_if_in_star ( const Weighted_point p,
Vertex_handle  star_center,
Full_cell_handle  start = Full_cell_handle() 
)

inserts the weighted point p in the triangulation on the condition that the vertex star_center appears in the conflict zone of p (that is, p would appear in the star of star_center after the insertion).

If the insertion of p creates a new vertex, this vertex is returned. Otherwise, a default constructed handle is returned.

If the dimension of the triangulation is 0 and if p coincides with an existing vertex and has a greater weight, then p replaces it as vertex of the triangulation and this vertex is returned.

If p coincides with an already existing vertex, with both point and weights being equal, then this vertex is returned and the triangulation remains unchanged.

By convention, if the insertion of p would increase the dimension of the triangulation, it is inserted.

Prior to the actual insertion, p is located in the triangulation; start is used as a starting place for locating p.

See also
Regular_triangulation::compute_conflict_zone()

◆ insert_if_in_star() [2/2]

template<typename RegularTriangulationTraits_ , typename TriangulationDataStructure_ >
Vertex_handle CGAL::Regular_triangulation< RegularTriangulationTraits_, TriangulationDataStructure_ >::insert_if_in_star ( const Weighted_point p,
Vertex_handle  star_center,
Locate_type  lt,
const Face f,
const Facet ft,
Full_cell_handle  s 
)

inserts the weighted point p in the triangulation.

This function is similar to the above insert_if_in_star() function, but takes as additional parameters the return values of the location query of p.

See also
Triangulation::locate().