CGAL provides predicates for the orientation of point sets (orientation, leftturn, rightturn, collinear, coplanar), for comparing points according to some given order, especially for comparing Cartesian coordinates (e.g. lexicographically_xy_smaller), in-circle and in-sphere tests, and predicates to compare distances.
Affine transformations (Aff_transformation_2<Kernel>, Aff_transformation_3<Kernel>) allow to generate new object instances under arbitrary affine transformations. These transformations include translations, rotations (in 2D only) and scaling. Most of the geometric objects in a kernel have a member function transform(Aff_transformation t) which applies the transformation to the object instance.
CGAL also provides a set of functions that detect or compute the intersection between objects of the 2D kernel, and many objects in the 3D kernel, and functions to calculate their squared distance . Moreover, some member functions of kernel objects are constructions.
So there are routines that compute the square of the Euclidean distance, but no routines that compute the distance itself. Why? First of all, the two values can be derived from each other quite easily (by taking the square root or taking the square). So, supplying only the one and not the other is only a minor inconvenience for the user. Second, often either value can be used. This is for example the case when (squared) distances are compared. Third, the library wants to stimulate the use of the squared distance instead of the distance. The squared distance can be computed in more cases and the computation is cheaper. We do this by not providing the perhaps more natural routine, The problem of a distance routine is that it needs the sqrt operation. This has two drawbacks:
{ Point_2< Cartesian<double> > point; Segment_2< Cartesian<double> > segment, segment_1, segment_2; std::cin >> segment_1 >> segment_2; Object obj = intersection(segment_1, segment_2); if (assign(point, obj)) { /* do something with point */ } else if ((assign(segment, obj)) { /* do something with segment*/ }
/* there was no intersection */ }
The
intersection
routine itself looks roughly as follows:
template < class Kernel > Object intersection(Segment_2<Kernel> s1, Segment_2<Kernel> s2) {
if (/* intersection in a point */ ) {
Point_2<Kernel> p = ... ; return make_object(p);
} else if (/* intersection in a segment */ ) {
Segment_2<Kernel> s = ... ; return make_object(s); } return Object(); }
In CGAL, we provide predicates in which such geometric decisions are made directly with a reference to the input points , , , , without an intermediary object like a plane. For the above test, the recommended way to get the result is to use orientation(p,q,r,s). For exact number types like leda_real, the situation is different. If several tests are to be made with the same plane, it pays off to construct the plane and to use oriented_side(p).