An instance of data type Ray_d is a ray in d-dimensional Euclidean space. It starts in a point called the source of r and it goes to infinity.


the linear algebra layer.


Ray_d<Kernel> r;
introduces some ray in d-dimensional space.

Ray_d<Kernel> r ( Point_d<Kernel> p, Point_d<Kernel> q);
introduces a ray through p and q and starting at p.
Precondition: p and q are distinct and have the same dimension.
Precondition: p.dimension()==q.dimension().

Ray_d<Kernel> r ( Point_d<Kernel> p, Direction_d<Kernel> dir);
introduces a ray starting in p with direction dir.
Precondition: p and dir have the same dimension and dir is not degenerate.
Precondition: p.dimension()==dir.dimension().

Ray_d<Kernel> r ( Segment_d<Kernel> s);
introduces a ray through s.source() and and starting at s.source().
Precondition: s is not degenerate.


int r.dimension () returns the dimension of the ambient space.

Point_d<Kernel> r.source () returns the source point of r.

Point_d<Kernel> r.point ( int i) returns a point on r. point(0) is the source. point(i), with i>0, is different from the source.
Precondition: i greater or equal 0.

Direction_d<Kernel> r.direction () returns the direction of r.

Line_d<Kernel> r.supporting_line () returns the supporting line of r.

Ray_d<Kernel> r.opposite () returns the ray with direction opposite to r and starting in source.

Ray_d<Kernel> r.transform ( Aff_transformation_d<Kernel> t)
returns t(r).
Precondition: r.dimension()==t.dimension().

Ray_d<Kernel> r + Vector_d<Kernel> v returns r+v, i.e., r translated by vector v.
Precondition: r.dimension()==v.dimension().

bool r.has_on ( Point_d<Kernel> p) A point is on r, iff it is equal to the source of r, or if it is in the interior of r.
Precondition: r.dimension()==p.dimension().

Non-Member Functions

bool parallel ( r1, r2) returns true if the unoriented supporting lines of r1 and r2 are parallel and false otherwise.
Precondition: r1.dimension()==r2.dimension().


Rays are implemented by a pair of points as an item type. All operations like creation, initialization, tests, direction calculation, input and output on a ray r take time O(r.dimension()). dimension(), coordinate and point access, and identity test take constant time. The space requirement is O(r.dimension()).