An object of the class Uncertain<T> represents an uncertainty on the value of type T. This uncertainty is represented by a non-empty range of values of type T.
The idea is that sometimes you are not sure of the result of a function, and you would like to communicate that to the caller. Uncertain<T> allows just that.
Uncertain<T> is also meant to be used as a drop-in replacement for T in some template contexts, as much as possible. This is why it provides overloaded operators and functions to naturally extend the Boolean operations for Uncertain<bool> for example, or the operations on enumeration types.
Uncertain<T> is used in CGAL as the return type of geometric predicates when the number type used is interval arithmetic like Interval_nt. End users typically do not see it, as it is hidden in the implementation of the filtered predicates provided by the various filtered kernels, but it is important that providers of predicates that are meant to be filtered by Filtered_predicate, know about it.
Note concerning CGAL assertions: assertions checking an expression of type Uncertain<bool> will trigger an assertion failure only if the assertion is certainly false. In case of an indeterminate value, the assertion is not triggered. This means that we assume, in case of doubt, that there is no error.
It can also be used in other contexts as well, as it is a general tool. This can be seen as support for non-deterministic programming. Finally, note that this class has some common points with boost::tribool.
#include <CGAL/Uncertain.h>
The parameter T can either be bool or one of the three-valued (-1, 0, 1) enumeration types: Sign, Comparison_result, Orientation, Oriented_side, Bounded_side or Angle.
Some functions are defined only when T is bool or alternatively when it is one of the enumeration types listed previously.
| |
introduces a certain object with value T().
| |
| |
introduces a certain object with value t.
|
|
| assigns the certain value t to u. |
| |||
introduces an object representing the range with lower bound i and
upper bound s.
|
The following functions are meant to be used very rarely, they provide ways to inspect the content of an Uncertain<T> object.
|
| returns the lower bound of the range represented by u. |
|
| returns the upper bound of the range represented by u. |
|
| returns true whether u and u are the same range (equality as sets). |
There are several ways to extract the content of an Uncertain object. The simplest way is to rely on the implicit conversion from Uncertain<T> to T. In this case, no special code has to be written, apart from an exception handler (anywhere higher in the call stack) to manage the uncertain case. The more involved one is more efficient, but requires manual treatment of the uncertain case, such as:
Uncertain<bool> b = ...; if (is_certain(b)) bool cert_b = get_certain(b); // Extract the certain bool it contains ... else ... // b is indeterminate
Another option is :
Uncertain<bool> b = ...; if (certainly(b)) ... // b is certainly true else if (certainly_not(b)) ... // b is certainly false else ... // b is indeterminate
There are many other handy functions which can be used for easier usage depending on the context. They are listed in the sequel.
|
| returns an indeterminate range. |
| ||||
|
| returns u.inf(). | ||
| ||||
|
| returns u.sup(). | ||
| ||||
|
| returns true. | ||
| ||||
|
| returns u.is_certain(). | ||
| ||||
|
| returns U::indeterminate() if U is Uncertain<T>, and U() otherwise. | ||
| ||||
|
| returns false. | ||
| ||||
|
| |||
returns !is_certain(u). | ||||
| ||||
|
| returns t. | ||
| ||||
|
|
returns u.make_certain().
| ||
| ||||
|
| returns t. | ||
| ||||
|
| returns u.make_certain(). | ||
| ||||
|
| returns Uncertain<T>(u). | ||
| ||||
|
| returns u. |
The overloaded operators and functions are defined as preserving the set-inclusion property. Similarly to interval arithmetic, the returned range is guaranteed to contain the result of the operation over all values of the input range(s). In the following documentation we express this as the extension of the corresponding function over the type T.
| ||
|
| returns the extension of the equality operator over u and v. |
| ||
|
| returns u == make_uncertain(v). |
| ||
|
| returns v == u. |
| ||
|
| returns the extension of the inequality operator over u and v. |
| ||
|
| returns u != make_uncertain(v). |
| ||
|
| returns v != u. |
|
| returns the range containing the negated values of u. |
|
| |
returns the range containing the values computed as logical or from u and v. | ||
|
| returns u | make_uncertain(v). |
|
| returns v | u. |
|
| |
returns the range containing the values computed as logical and from u and v. | ||
|
| returns u & make_uncertain(v). |
|
| returns v & u. |
Note : the logical operators and are not overloaded on purpose. The reason is that, when f() && g() is evaluated and they return bool, then g() is only evaluated when f() returns true. One could have a dependency so that g() has an internal precondition that required that f() had returned true. The overloaded operators for user-defined types can not provide this short-circuiting property, and so, if the overloaded operators where provided, then g() would be evaluated, no matter the result of f(), which could lead to an unwanted situation, or a performance loss. The and operators do not have this short-circuiting property, and are therefore overloaded safely.
When translating normal code to use and propagate uncertainty, such as :
// Logical AND if ( (p.x() == 0) && (p.y() == 0) ) ... else ... // Logical OR if ( (q.x() == 0) || (q.y() == 0) ) ... else ...
One can do, for example :
// Logical AND Uncertain<bool> tmp = (p.x() == 0); Uncertain<bool> res = certainly_not(tmp) ? make_uncertain(false) : tmp & (p.y() == 0); ... // Use res // Logical OR Uncertain<bool> tmp = (q.x() == 0); Uncertain<bool> res = certainly(tmp) ? make_uncertain(true) : tmp | (q.y() == 0); ... // Use res
This ensures that the first expression is not evaluated twice, and that the second is evaluated only if needed.
This behavior can also be emulated through the use of macros, but only using non-standard features ("statement expressions", such as provided by GCC). The macros CGAL_AND and CGAL_OR are provided that perform the lazy evaluation of these logical operations. On compilers that do not support statement expressions, the macros simply expand to the and operators (which will throw an exception instead of propagating the uncertainty).
// Logical AND Uncertain<bool> res = CGAL_AND( p.x() == 0 , p.y() == 0 ); ... // Use res // Logical OR Uncertain<bool> res = CGAL_OR( q.x() == 0 , q.y() == 0 ); ... // Use res
For convenience, the macros CGAL_AND_3 and CGAL_OR_3 are also provided to support boolean operations with 3 arguments instead of 2.
| ||
|
| returns the extension of the less-than operator over u and v. |
| ||
|
| returns u < make_uncertain(v). |
| ||
|
| returns make_uncertain(u) < v. |
| ||
|
| returns the extension of the greater-than operator over u and v. |
| ||
|
| returns u > make_uncertain(v). |
| ||
|
| returns make_uncertain(u) > v. |
| ||
|
| returns the extension of the less-than or equal operator over u and v. |
| ||
|
| returns u <= make_uncertain(v). |
| ||
|
| returns make_uncertain(u) <= v. |
| ||
|
| returns the extension of the greater-than or equal operator over u and v. |
| ||
|
| returns u > make_uncertain(v). |
| ||
|
| returns make_uncertain(u) >= v. |
| ||
|
| returns the extension of the multiplication operator over u and v. This requires T to have a multiplication operator as well. |
| ||
|
| returns u * make_uncertain(v). |
| ||
|
| returns make_uncertain(u) * v. |
| ||
|
| returns the extension of the unary minus operator over u. |
| ||
|
| returns the extension of the enum_cast<T> function over u. |
|
| returns true iff u.is_certain(), and the u.make_certain() returns true. |
|
| returns u. |
|
| returns true iff u.is_certain() returns false, or if u.make_certain() returns true. |
|
| returns u. |
|
| |
returns true iff u.is_certain(), and the u.make_certain() returns false. | ||
|
| returns !u. |
|
| returns true iff u.is_certain() returns false, or if u.make_certain() returns false. |
|
| returns !u. |