CGAL 6.0.1 - 2D Arrangements
Loading...
Searching...
No Matches
Bibliography
[1]

Pankaj K. Agarwal and Micha Sharir. Arrangements and their applications. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

[2]

Eric Berberich, Arno Eigenwillig, Michael Hemmer, Susan Hert, Kurt Mehlhorn, and Elmar Schömer. A computational basis for conic arcs and boolean operations on conic polygons. In Rolf Möhring and Rajeev Raman, editors, Algorithms - ESA 2002: 10th Annual European Symposium, volume 2461 of Lecture Notes in Computer Science, pages 174–186, Rome, Italy, September 2002. Springer.

[3]

Eric Berberich, Efi Fogel, Dan Halperin, Michael Kerber, and Ophir Setter. Arrangements on parametric surfaces II: Concretizations and applications. Mathematics in Computer Science, 4:67–91, 2010.

[4]

Eric Berberich, Efi Fogel, Dan Halperin, Kurt Mehlhorn, and Ron Wein. Arrangements on parametric surfaces I: General framework and infrastructure. Mathematics in Computer Science, 4:45–66, 2010.

[5]

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition, 2000.

[6]

Efi Fogel, Dan Halperin, Lutz Kettner, Monique Teillaud, Ron Wein, and Nicola Wolpert. Arrangements. In J.-D. Boissonnat and M. Teillaud, editors, Effective Computational Geometry for Curves and Surfaces, chapter 1, pages 1–66. 2007.

[7]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[8]

Dan Halperin. Arrangements. In Jacob E. Goodman and Joseph O'Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 24, pages 529–562. Chapman & Hall/CRC, 2nd edition, 2004.

[9]

Idit Haran and Dan Halperin. Efficient point location in cgal arrangements using landmarks, 2005.

[10]

M. Hemmer, M. Kleinbort, and D. Halperin. Improved Implementation of Point Location in General Two-Dimensional Subdivisions. ArXiv e-prints, May 2012.

[11]

K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Comput., 10(3-4):253–280, 1990.

[12]

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C++. Cambridge University Press, 2nd edition, 2002.

[13]

R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl., 1(1):51–64, 1991.