CGAL 5.5.2 - Surface Mesh Topology
Surface_mesh_topology/path_simplicity_double_torus.cpp
#include <CGAL/Linear_cell_complex_for_combinatorial_map.h>
#include <CGAL/Linear_cell_complex_constructors.h>
#include <CGAL/Curves_on_surface_topology.h>
#include <CGAL/Path_on_surface.h>
#include <CGAL/draw_face_graph_with_paths.h>
void create_path_1(Path_on_surface<LCC_3_cmap>& p)
{
p.push_back_by_index(438); // Its starting dart
for (int i=0; i<5; ++i)
{ p.extend_positive_turn(2); } // Extend the path
for (int i=0; i<7; ++i)
}
void create_path_2(Path_on_surface<LCC_3_cmap>& p)
{
p.push_back_by_index({14, 15, 391, 392, 395, 227, 223, 313, 318, 326, 82,
87, 431, 160, 435, 753, 754, 756, 757, 674, 678, 850,
483, 480, 475, 470, 893, 618, 622, 548, 551, 795,
797, 806, 637, 634, 638, 872, 521, 376, 180, 424,
88, 95, 440, 152, 149, 21});
}
void create_path_3(Path_on_surface<LCC_3_cmap>& p)
{
p.push_back_by_index(473); // Its starting dart
p.extend_positive_turn(1); // Extend the path
for (int i=0; i<7; ++i)
for (int i=0; i<3; ++i)
for (int i=0; i<2; ++i)
for (int i=0; i<3; ++i)
for (int i=0; i<2; ++i)
for (int i=0; i<3; ++i)
for (int i=0; i<2; ++i)
for (int i=0; i<2; ++i)
for (int i=0; i<3; ++i)
for (int i=0; i<3; ++i)
for (int i=0; i<2; ++i)
}
int main(int argc, char** argv)
{
bool draw=(argc>1?std::string(argv[1])=="-draw":false);
LCC_3_cmap lcc;
{
exit(EXIT_FAILURE);
}
Path_on_surface<LCC_3_cmap> p1(lcc), p2(lcc), p3(lcc);
create_path_1(p1);
create_path_2(p2);
create_path_3(p3);
bool res1=cst.is_homotopic_to_simple_cycle(p1);
std::cout<<"Path p1 (pink) "<<(res1?"IS":"IS NOT")
<<" simple."<<std::endl;
bool res2=cst.is_homotopic_to_simple_cycle(p2);
std::cout<<"Path p2 (green) "<<(res2?"IS":"IS NOT")
<<" simple."<<std::endl;
bool res3=cst.is_homotopic_to_simple_cycle(p3);
std::cout<<"Path p3 (blue) "<<(res3?"IS":"IS NOT")
<<" simple."<<std::endl;
if (draw)
{ CGAL::draw(lcc, {p1, p2, p3}); }
return EXIT_SUCCESS;
}