\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10-I-196 - Generalized Maps
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
Generalized_map/gmap_3_marks.cpp
#include <CGAL/Generalized_map.h>
#include <iostream>
#include <cstdlib>
typedef CGAL::Generalized_map<3> GMap_3;
typedef GMap_3::Dart_handle Dart_handle;
typedef GMap_3::size_type size_type;
int main()
{
GMap_3 gm;
// 1) Reserve a mark.
size_type amark;
try
{
amark = gm.get_new_mark();
}
catch (GMap_3::Exception_no_more_available_mark)
{
std::cerr<<"No more free mark, exit."<<std::endl;
exit(-1);
}
// 2) Create two tetrahedra.
Dart_handle dh1 = gm.make_combinatorial_tetrahedron();
Dart_handle dh2 = gm.make_combinatorial_tetrahedron();
CGAL_assertion( gm.is_valid() );
CGAL_assertion( gm.is_volume_combinatorial_tetrahedron(dh1) );
CGAL_assertion( gm.is_volume_combinatorial_tetrahedron(dh2) );
// 3) 3-sew them.
gm.sew<3>(dh1, dh2);
// 4) Mark the darts belonging to the first tetrahedron.
// Mark the darts belonging to the first tetrahedron.
for (GMap_3::Dart_of_cell_range<3>::iterator
it(gm.darts_of_cell<3>(dh1).begin()),
itend(gm.darts_of_cell<3>(dh1).end()); it!=itend; ++it)
gm.mark(it, amark);
// 4) Remove the common 2-cell between the two cubes:
// the two tetrahedra are merged.
gm.remove_cell<2>(dh1);
// 5) Thanks to the mark, we know which darts come from the first tetrahedron.
unsigned int res=0;
for (GMap_3::Dart_range::iterator it(gm.darts().begin()),
itend(gm.darts().end()); it!=itend; ++it)
{
if ( gm.is_marked(it, amark) )
++res;
}
std::cout<<"Number of darts from the first tetrahedron: "<<res<<std::endl;
gm.free_mark(amark);
return EXIT_SUCCESS;
}