\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.10 - dD Triangulations
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Groups Pages
CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure > Class Template Reference

#include <CGAL/Triangulation.h>

Definition

This class implements triangulations of point sets in dimensions \( d \).

The triangulation covers the convex hull of the input points (the embedded vertices of the triangulation).

To store this triangulation in a triangulation data structure, we turn the set of its faces into a topological sphere by adding a fictitious vertex, called the infinite vertex, as well as infinite simplices incident to boundary faces of the convex hull. Each infinite \( i\)-simplex is incident to the infinite vertex and to an \( (i-1)\)-simplex of the convex hull boundary.

Template Parameters
TriangulationTraitsis the geometric traits class that provides the geometric types and predicates needed by triangulations. TriangulationTraits must be a model of the concept TriangulationTraits.
TriangulationDataStructuremust be a model of the concept TriangulationDataStructure. This model is used to store the faces of the triangulation. The parameter TriangulationDataStructure defaults to Triangulation_data_structure whose template parameters are instantiated as follows:

The triangulation deduces its maximal dimension from the type TriangulationTraits::Dimension. This dimension has to match the dimension returned by TriangulationDataStructure::maximal_dimension().

Input/Output

The information in the iostream is: the current dimension, the number of finite vertices, the non-combinatorial information about vertices (point, etc.), the number of full cells, the indices of the vertices of each full cell, plus the non-combinatorial information about each full cell, then the indices of the neighbors of each full cell, where the index corresponds to the preceding list of full cells.

See Also
Triangulation_data_structure<Dimensionality, TriangulationDSVertex, TriangulationDSFullCell>
Delaunay_triangulation<DelaunayTriangulationTraits, TriangulationDataStructure>
Examples:
triangulation.cpp.

Types

typedef TriangulationTraits Geom_traits
 Type for the model of the TriangulationTraits concept.
 
typedef
TriangulationTraits::Point_d 
Point
 A point in Euclidean space.
 
typedef
TriangulationTraits::Dimension 
Maximal_dimension
 This indicates whether the maximal dimension is static (i.e. if the type of Maximal_dimension is CGAL::Dimension_tag<int dim>) or dynamic (i.e. if the type of Maximal_dimension is CGAL::Dynamic_dimension_tag). More...
 
typedef TriangulationDataStructure Triangulation_ds
 The second template parameter: the triangulation data structure.
 
typedef
TriangulationDataStructure::Vertex 
Vertex
 A model of the concept TriangulationVertex.
 
typedef
TriangulationDataStructure::Full_cell 
Full_cell
 A model of the concept TriangulationFullCell.
 
typedef
TriangulationDataStructure::Facet 
Facet
 The facet class.
 
typedef
TriangulationDataStructure::Face 
Face
 A model of the concept TriangulationDSFace.
 

Handles and Iterators

The vertices and full cells of triangulations are accessed through handles and iterators.

A handle is a model of the Handle concept, and supports the two dereference operators: operator* and operator->. Iterators are bidirectional and non-mutable. They are convertible to the corresponding handles, thus the user can pass them directly as arguments to the functions. All handles are model of LessThanComparable and Hashable, that is they can be used as keys in containers such as std::map and boost::unordered_map.

enum  Locate_type {
  ON_VERTEX =0, IN_FACE, IN_FACET, IN_FULL_CELL,
  OUTSIDE_CONVEX_HULL, OUTSIDE_AFFINE_HULL
}
 specifies which case occurs when locating a point in the triangulation. More...
 
typedef
TriangulationDataStructure::Vertex_handle 
Vertex_handle
 handle to a a vertex
 
typedef
TriangulationDataStructure::Vertex_const_handle 
Vertex_const_handle
 const handle to a a vertex
 
typedef
TriangulationDataStructure::Vertex_iterator 
Vertex_iterator
 iterator over all vertices (including the infinite one)
 
typedef
TriangulationDataStructure::Vertex_const_iterator 
Vertex_const_iterator
 const iterator over all vertices (including the infinite one)
 
typedef unspecified_type Finite_vertex_iterator
 iterator over finite vertices
 
typedef unspecified_type Finite_vertex_const_iterator
 const iterator over finite vertices
 
typedef
TriangulationDataStructure::Full_cell_handle 
Full_cell_handle
 handle to a full cell
 
typedef
TriangulationDataStructure::Full_cell_const_handle 
Full_cell_const_handle
 const handle to a full cell
 
typedef
TriangulationDataStructure::Full_cell_iterator 
Full_cell_iterator
 iterator over all full cells (including the infinite ones)
 
typedef
TriangulationDataStructure::Full_cell_const_iterator 
Full_cell_const_iterator
 const iterator over all full cells (including the infinite ones)
 
typedef unspecified_type Finite_full_cell_iterator
 iterator over finite full cells
 
typedef unspecified_type Finite_full_cell_const_iterator
 const iterator over finite full cells
 
typedef
TriangulationDataStructure::Facet_iterator 
Facet_iterator
 iterator over all facets (including the infinite ones)
 
typedef unspecified_type Finite_facet_iterator
 iterator over finite facets
 
typedef
TriangulationDataStructure::size_type 
size_type
 Size type (an unsigned integral type).
 
typedef
TriangulationDataStructure::difference_type 
difference_type
 Difference type (a signed integral type).
 

Creation

 Triangulation (const int dim, const Geom_traits &gt=Geom_traits())
 Instantiates a triangulation with one vertex (the vertex at infinity). More...
 
 Triangulation (const Triangulation &t2)
 The copy constructor.
 

Access Functions

const Triangulation_dstds () const
 
Advanced
Returns a const reference to the underlying triangulation data structure. More...
 
Triangulation_dstds ()
 Returns a non-const reference to the underlying triangulation data structure.
 
const Geom_traitsgeom_traits () const
 Returns a const reference to the geometric traits instance.
 
int maximal_dimension () const
 Returns the maximal dimension of the full dimensional cells that can be stored in the triangulation.
 
int current_dimension () const
 Returns the dimension of the triangulation (as an embedded manifold).
 
bool empty () const
 Returns true if the triangulation has no finite vertex. More...
 
size_type number_of_vertices () const
 Returns the number of finite vertices in the triangulation.
 
size_type number_of_full_cells () const
 Returns the number of full cells of maximal dimension in the triangulation (full cells incident to the vertex at infinity are counted).
 
Vertex_handle infinite_vertex () const
 Returns a handle to the vertex at infinity.
 
Full_cell_handle infinite_full_cell () const
 Returns a handle to some full cell incident to the vertex at infinity.
 

Non-Constant-Time Access Functions

size_type number_of_finite_full_cells () const
 Returns the number of full cells of maximal dimension that are not incident to the vertex at infinity.
 

Tests for Finite and Infinite Elements

bool is_infinite (const Vertex_handle v) const
 Returns true if and only if the vertex v is the infinite vertex.
 
bool is_infinite (const Full_cell_handle c) const
 Returns true if and only if c is incident to the infinite vertex.
 
bool is_infinite (const Facet &ft) const
 Returns true if and only if facet ft is incident to the infinite vertex.
 
bool is_infinite (const Face &f) const
 Returns true if and only if the face f is incident to the infinite vertex.
 

Faces and Facets

Full_cell_handle full_cell (const Facet &f) const
 Returns a full cell containing the facet f
 
int index_of_covertex (const Facet &f) const
 Returns the index of the vertex of the full cell c=tr.full_cell(f) which does not belong to c.
 

Triangulation Traversal

Vertex_iterator vertices_begin ()
 The first vertex of tr.
 
Vertex_iterator vertices_end ()
 The beyond vertex of tr.
 
Finite_vertex_iterator finite_vertices_begin ()
 The first finite vertex of tr.
 
Finite_vertex_iterator finite_vertices_end ()
 The beyond finite vertex of tr.
 
Full_cell_iterator full_cells_begin ()
 The first full cell of tr.
 
Full_cell_iterator full_cells_end ()
 The beyond full cell of tr.
 
Finite_full_cell_iterator finite_full_cells_begin ()
 The first finite full cell of tr.
 
Finite_full_cell_iterator finite_full_cells_end ()
 The beyond finite full cell of tr.
 
Facet_iterator facets_begin ()
 Iterator to the first facet of the triangulation.
 
Facet_iterator facets_end ()
 Iterator to the beyond facet of the triangulation.
 
Finite_facet_iterator finite_facets_begin ()
 Iterator to the first finite facet of the triangulation.
 
Finite_facet_iterator finite_facets_end ()
 Iterator to the beyond finite facet of the triangulation.
 

Point Location

The class Triangulation provides methods to locate a query point with respect to the triangulation:

Full_cell_handle locate (const Point &query, Full_cell_handle hint=Full_cell_handle()) const
 The optional argument hint is used as a starting place for the search. More...
 
Full_cell_handle locate (const Point &query, Vertex_handle hint) const
 Same as above but hint is a vertex and not a full cell.
 
Full_cell_handle locate (const Point &query, Locate_type &loc_type, Face &f, Facet &ft, Full_cell_handle hint=Full_cell_handle()) const
 The optional argument hint is used as a starting place for the search. More...
 
Full_cell_handle locate (const Point &query, Locate_type &loc_type, Face &f, Vertex_handle hint) const
 Same as above but hint, the starting place for the search, is a vertex. More...
 

Removal

Vertex_handle collapse_face (const Point &p, const Face &f)
 
Advanced
Contracts the Face f to a single vertex at position p. More...
 

Point Insertion

The class Triangulation provides functions to insert a given point in the triangulation:

template<typename ForwardIterator >
size_type insert (ForwardIterator s, ForwardIterator e)
 Inserts the points found in range [s,e) in the triangulation. More...
 
Vertex_handle insert (const Point p, Full_cell_handle hint=Full_cell_handle())
 Inserts point p in the triangulation. More...
 
Vertex_handle insert (const Point p, Vertex_handle hint)
 Same as above but uses a vertex hint as the starting place for the search.
 
Vertex_handle insert (const Point p, Locate_type loc_type, Face &f, Facet &ft, Full_cell_handle c)
 
Advanced
Inserts point p into the triangulation and returns a handle to the Vertex at that position. More...
 
template<typename ForwardIterator , typename OutputIterator >
Vertex_handle insert_in_hole (const Point &p, ForwardIterator s, ForwardIterator e, const Facet &ft, OutputIterator out)
 
Advanced
Removes the full cells in the range \( C=\)[s, e), inserts a vertex at position p and fills the hole by connecting each face of the boundary to p. More...
 
template<typename ForwardIterator >
Vertex_handle insert_in_hole (const Point &p, ForwardIterator s, ForwardIterator e, const Facet &ft)
 
Advanced
Same as above, but the newly created full cells are not retrieved. More...
 
Vertex_handle insert_in_face (const Point &p, const Face &f)
 
Advanced
Inserts point p in the triangulation. More...
 
Vertex_handle insert_in_facet (const Point &p, const Facet &ft)
 
Advanced
Inserts point p in the triangulation. More...
 
Vertex_handle insert_in_full_cell (const Point &p, Full_cell_handle c)
 
Advanced
Inserts point p in the triangulation. More...
 
Vertex_handle insert_outside_convex_hull (const Point &, Full_cell_handle c)
 
Advanced
Inserts point p in the triangulation. More...
 
Vertex_handle insert_outside_affine_hull (const Point &)
 
Advanced
Inserts point p in the triangulation. More...
 

Validity Check

bool is_valid (bool verbose=false) const
 This is a function for debugging purpose. More...
 
bool are_incident_full_cells_valid (Vertex_const_handle v, bool verbose=false) const
 This is a function for debugging purpose. More...
 

Input/Output

std::istream & operator>> (std::istream &is, Triangulation &t)
 Reads the underlying combinatorial triangulation from is by calling the corresponding input operator of the triangulation data structure class (note that the infinite vertex is numbered 0), and the non-combinatorial information by calling the corresponding input operators of the vertex and the full cell classes (such as point coordinates), which are provided by overloading the stream operators of the vertex and full cell types. More...
 
std::ostream & operator<< (std::ostream &os, const Triangulation &t)
 Writes the triangulation t into os.
 

Member Typedef Documentation

template<typename TriangulationTraits, typename TriangulationDataStructure>
typedef TriangulationTraits::Dimension CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::Maximal_dimension

This indicates whether the maximal dimension is static (i.e. if the type of Maximal_dimension is CGAL::Dimension_tag<int dim>) or dynamic (i.e. if the type of Maximal_dimension is CGAL::Dynamic_dimension_tag).

In the latter case, the dim parameter passed to the class's constructor is used.

Member Enumeration Documentation

template<typename TriangulationTraits, typename TriangulationDataStructure>
enum CGAL::Triangulation::Locate_type

specifies which case occurs when locating a point in the triangulation.

Enumerator
ON_VERTEX 

when the located point coincides with a vertex of the triangulation

IN_FACE 

when the point is in the interior of a face of dimension equal or less than maximal_dimension() - 2

IN_FACET 

when the point is in the interior of a facet

IN_FULL_CELL 

when the point is in the interior of a full cell

OUTSIDE_CONVEX_HULL 

when the point is outside the convex hull but in the affine hull of the current triangulation

OUTSIDE_AFFINE_HULL 

when the point is outside the affine hull of the current triangulation.

Constructor & Destructor Documentation

template<typename TriangulationTraits, typename TriangulationDataStructure>
CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::Triangulation ( const int  dim,
const Geom_traits gt = Geom_traits() 
)

Instantiates a triangulation with one vertex (the vertex at infinity).

See the description of the nested type Maximal_dimension above for an explanation of the use of the parameter dim. The triangulation stores a copy of the geometric traits gt.

Member Function Documentation

template<typename TriangulationTraits, typename TriangulationDataStructure>
bool CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::are_incident_full_cells_valid ( Vertex_const_handle  v,
bool  verbose = false 
) const

This is a function for debugging purpose.

Debugging Support

Returns true if and only if all finite full cells incident to v have positive orientation. The verbose parameter is not used.

template<typename TriangulationTraits, typename TriangulationDataStructure>
Vertex_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::collapse_face ( const Point p,
const Face f 
)

Advanced
Contracts the Face f to a single vertex at position p.

Returns a handle to that vertex.

Precondition
The boundary of the union of full cells incident to f must be a triangulation of a sphere of dimension tr.current_dimension()).
template<typename TriangulationTraits, typename TriangulationDataStructure>
bool CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::empty ( ) const

Returns true if the triangulation has no finite vertex.

Returns false otherwise.

template<typename TriangulationTraits, typename TriangulationDataStructure>
template<typename ForwardIterator >
size_type CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::insert ( ForwardIterator  s,
ForwardIterator  e 
)

Inserts the points found in range [s,e) in the triangulation.

Returns the number of vertices actually inserted. (If several vertices share the same position in space, only the vertex that was actually inserted is counted.)

Template Parameters
ForwardIteratormust be an input iterator with the value type Point.
template<typename TriangulationTraits, typename TriangulationDataStructure>
Vertex_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::insert ( const Point  p,
Full_cell_handle  hint = Full_cell_handle() 
)

Inserts point p in the triangulation.

Returns a Vertex_handle to the vertex of the triangulation with position p. Prior to the actual insertion, p is located in the triangulation; hint is used as a starting place for locating p.

template<typename TriangulationTraits, typename TriangulationDataStructure>
Vertex_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::insert ( const Point  p,
Locate_type  loc_type,
Face f,
Facet ft,
Full_cell_handle  c 
)

Advanced
Inserts point p into the triangulation and returns a handle to the Vertex at that position.

The action taken depends on the value of loc_type:

ON_VERTEX
The point of the pVertex described by f is set to p.
IN_FACE
The point p is inserted in the Face f.
IN_FACET
The point p is inserted in the Facet ft.
Anything else
The point p is inserted in the triangulation according to the value of loc_type, using the full cell c.

This method is used internally by the other insert() methods.

template<typename TriangulationTraits, typename TriangulationDataStructure>
Vertex_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::insert_in_face ( const Point p,
const Face f 
)

Advanced
Inserts point p in the triangulation.
Precondition
p must lie in the relative interior of f.
template<typename TriangulationTraits, typename TriangulationDataStructure>
Vertex_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::insert_in_facet ( const Point p,
const Facet ft 
)

Advanced
Inserts point p in the triangulation.
Precondition
p must lie in the relative interior of ft.
template<typename TriangulationTraits, typename TriangulationDataStructure>
Vertex_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::insert_in_full_cell ( const Point p,
Full_cell_handle  c 
)

Advanced
Inserts point p in the triangulation.
Precondition
p must lie in the interior of c.
template<typename TriangulationTraits, typename TriangulationDataStructure>
template<typename ForwardIterator , typename OutputIterator >
Vertex_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::insert_in_hole ( const Point p,
ForwardIterator  s,
ForwardIterator  e,
const Facet ft,
OutputIterator  out 
)

Advanced
Removes the full cells in the range \( C=\)[s, e), inserts a vertex at position p and fills the hole by connecting each face of the boundary to p.

A Vertex_handle to the new Vertex is returned. The facet ft must lie on the boundary of \( C\) and its defining full cell, tr.full_cell(ft) must lie inside \( C\). Handles to the newly created full cells are output in the out output iterator.

Precondition
\(C\) must be a topological ball, must contain p in its interior and must not contain any vertex of the triangulation.
template<typename TriangulationTraits, typename TriangulationDataStructure>
template<typename ForwardIterator >
Vertex_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::insert_in_hole ( const Point p,
ForwardIterator  s,
ForwardIterator  e,
const Facet ft 
)

Advanced
Same as above, but the newly created full cells are not retrieved.
template<typename TriangulationTraits, typename TriangulationDataStructure>
Vertex_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::insert_outside_affine_hull ( const Point )

Advanced
Inserts point p in the triangulation.
Precondition
p must lie outside the affine hull of tr.
template<typename TriangulationTraits, typename TriangulationDataStructure>
Vertex_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::insert_outside_convex_hull ( const Point ,
Full_cell_handle  c 
)

Advanced
Inserts point p in the triangulation.
Precondition
p must lie outside the convex hull of tr. The half-space defined by the infinite full cell c must contain p.
template<typename TriangulationTraits, typename TriangulationDataStructure>
bool CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::is_valid ( bool  verbose = false) const

This is a function for debugging purpose.

Debugging Support

Partially checks whether tr is a triangulation. This function returns true if the combinatorial triangulation data structure's is_valid() test returns true and if some geometric tests are passed with success. It is checked that the orientation of each finite full cell is positive and that the orientation of each infinite full cell is consistent with their finite adjacent full cells. The verbose parameter is not used.

template<typename TriangulationTraits, typename TriangulationDataStructure>
Full_cell_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::locate ( const Point query,
Full_cell_handle  hint = Full_cell_handle() 
) const

The optional argument hint is used as a starting place for the search.

If the query point lies outside the affine hull of the points (which can happen when tr.current_dimension() < tr.maximal_dimension()) or if there is no finite vertex yet in the triangulation, then locate returns a default constructed Full_cell_handle().

If the point query lies in the interior of a bounded (finite) full cell of tr, the latter full cell is returned.

If query lies on the boundary of some finite full cells, one of the cells is returned.

Let \( d=\)tr.current_dimension(). If the point query lies outside the convex hull of the points, an infinite full cell with vertices \( \{ p_1, p_2, \ldots, p_d, \infty\}\) is returned such that the full cell \( (p_1, p_2, \ldots, p_d, query)\) is positively oriented (the rest of the triangulation lies on the other side of facet \( (p_1, p_2, \ldots, p_d)\)).

template<typename TriangulationTraits, typename TriangulationDataStructure>
Full_cell_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::locate ( const Point query,
Locate_type loc_type,
Face f,
Facet ft,
Full_cell_handle  hint = Full_cell_handle() 
) const

The optional argument hint is used as a starting place for the search.

If the query point lies outside the affine hull of the points (which can happen when tr.current_dimension() < tr.maximal_dimension()) or if there is no finite vertex yet in the triangulation, then loc_type is set to OUTSIDE_AFFINE_HULL, and locate returns Full_cell_handle(). If the query point lies inside the affine hull of the points, the function finds the \( k\)-face that contains query in its relative interior (if the \( k\)-face is finite, it is unique) and the result is returned as follows:

\( k=0\)
loc_type is set to ON_VERTEX, f is set to the vertex v the query lies on and a full cell having v as a vertex is returned.
\( 0<k<\)c.current_dimension()-1
loc_type is set to IN_FACE, f is set to the unique finite face containing the query point. A full cell having f on its boundary is returned.
\( k=\)c.current_dimension()-1
loc_type is set to IN_FACET, ft is set to one of the two representation of the finite facet containing the query point. The full cell of ft is returned.
\( k=\)c.current_dimension()
If the query point lies outside the convex hull of the points in the triangulation, then loc_type is set to OUTSIDE_CONVEX_HULL and a full cell is returned as in the locate method above. If the query point lies inside the convex hull of the points in the triangulation, then loc_type is set to IN_FULL_CELL and the unique full cell containing the query point is returned.
template<typename TriangulationTraits, typename TriangulationDataStructure>
Full_cell_handle CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::locate ( const Point query,
Locate_type loc_type,
Face f,
Vertex_handle  hint 
) const

Same as above but hint, the starting place for the search, is a vertex.

The parameter hint is ignored if it is a default constructed Vertex_handle().

template<typename TriangulationTraits, typename TriangulationDataStructure>
std::istream& CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::operator>> ( std::istream &  is,
Triangulation< TriangulationTraits, TriangulationDataStructure > &  t 
)

Reads the underlying combinatorial triangulation from is by calling the corresponding input operator of the triangulation data structure class (note that the infinite vertex is numbered 0), and the non-combinatorial information by calling the corresponding input operators of the vertex and the full cell classes (such as point coordinates), which are provided by overloading the stream operators of the vertex and full cell types.

Assigns the resulting triangulation to t.

template<typename TriangulationTraits, typename TriangulationDataStructure>
const Triangulation_ds& CGAL::Triangulation< TriangulationTraits, TriangulationDataStructure >::tds ( ) const

Advanced
Returns a const reference to the underlying triangulation data structure.