\( \newcommand{\E}{\mathrm{E}} \) \( \newcommand{\A}{\mathrm{A}} \) \( \newcommand{\R}{\mathrm{R}} \) \( \newcommand{\N}{\mathrm{N}} \) \( \newcommand{\Q}{\mathrm{Q}} \) \( \newcommand{\Z}{\mathrm{Z}} \) \( \def\ccSum #1#2#3{ \sum_{#1}^{#2}{#3} } \def\ccProd #1#2#3{ \sum_{#1}^{#2}{#3} }\)
CGAL 4.12 - 2D and 3D Linear Geometry Kernel

Definition

Operations

A model of this concept must provide:

bool operator() (const Kernel::Circle_3 &c, const Kernel::Point_3 &p)
 returns true iff p lies on c.
 
bool operator() (const Kernel::Line_3 &l, const Kernel::Point_3 &p)
 returns true iff p lies on l.
 
bool operator() (const Kernel::Ray_3 &r, const Kernel::Point_3 &p)
 returns true iff p lies on r.
 
bool operator() (const Kernel::Segment_3 &s, const Kernel::Point_3 &p)
 returns true iff p lies on s.
 
bool operator() (const Kernel::Plane_3 &pl, const Kernel::Point_3 &p)
 returns true iff p lies on pl.
 
bool operator() (const Kernel::Plane_3 &pl, const Kernel::Line_3 &l)
 returns true iff l lies on pl.
 
bool operator() (const Kernel::Plane_3 &pl, const Kernel::Circle_3 &c)
 returns true iff c lies on pl.
 
bool operator() (const Kernel::Sphere_3 &s, const Kernel::Point_3 &c)
 returns true iff c lies on s.
 
bool operator() (const Kernel::Sphere_3 &s, const Kernel::Circle_3 &c)
 returns true iff c lies on s.
 
bool operator() (const Kernel::Triangle_3 &t, const Kernel::Point_3 &p)
 returns true iff p lies on t.