Function that produces a set of -monotone polygons that represent a partitioning of a polygon defined on a sequence of points.
#include <CGAL/partition_2.h>
| ||||
|
| |||
computes a partition of the polygon defined
by the points in the range [first, beyond) into -monotone
polygons. The counterclockwise-oriented partition polygons are written to
the sequence starting at position result. The past-the-end iterator for
the resulting sequence of polygons is returned. Precondition: The points in the range [first, beyond) define a simple, counterclockwise-oriented polygon. |
The default traits class Default_traits is Partition_traits_2, with the representation type determined by InputIterator::value_type.
This function implements the algorithm presented by de Berg et al. [dBvKOS97] which requires log time and space for a polygon with vertices.
The following program computes a -monotone partitioning of a polygon using the default traits class and stores the partition polygons in the list partition_polys. It then asserts that each partition polygon produced is, in fact, -monotone and that the partition is valid. (Note that these assertions are superfluous unless the postcondition checking for y_monotone_partition_2 has been turned off.)
// file: examples/Partition_2/y_monotone_partition_2.C #include <CGAL/basic.h> #include <CGAL/Exact_predicates_inexact_constructions_kernel.h> #include <CGAL/Partition_traits_2.h> #include <CGAL/partition_2.h> #include <CGAL/point_generators_2.h> #include <CGAL/random_polygon_2.h> #include <cassert> #include <list> typedef CGAL::Exact_predicates_inexact_constructions_kernel K; typedef CGAL::Partition_traits_2<K> Traits; typedef Traits::Point_2 Point_2; typedef Traits::Polygon_2 Polygon_2; typedef std::list<Polygon_2> Polygon_list; typedef CGAL::Creator_uniform_2<int, Point_2> Creator; typedef CGAL::Random_points_in_square_2<Point_2, Creator> Point_generator; void make_polygon(Polygon_2& polygon) { polygon.push_back(Point_2(391, 374)); polygon.push_back(Point_2(240, 431)); polygon.push_back(Point_2(252, 340)); polygon.push_back(Point_2(374, 320)); polygon.push_back(Point_2(289, 214)); polygon.push_back(Point_2(134, 390)); polygon.push_back(Point_2( 68, 186)); polygon.push_back(Point_2(154, 259)); polygon.push_back(Point_2(161, 107)); polygon.push_back(Point_2(435, 108)); polygon.push_back(Point_2(208, 148)); polygon.push_back(Point_2(295, 160)); polygon.push_back(Point_2(421, 212)); polygon.push_back(Point_2(441, 303)); } int main( ) { Polygon_2 polygon; Polygon_list partition_polys; /* CGAL::random_polygon_2(50, std::back_inserter(polygon), Point_generator(100)); */ make_polygon(polygon); CGAL::y_monotone_partition_2(polygon.vertices_begin(), polygon.vertices_end(), std::back_inserter(partition_polys)); std::list<Polygon_2>::const_iterator poly_it; for (poly_it = partition_polys.begin(); poly_it != partition_polys.end(); poly_it++) { assert(CGAL::is_y_monotone_2((*poly_it).vertices_begin(), (*poly_it).vertices_end())); } assert(CGAL::partition_is_valid_2(polygon.vertices_begin(), polygon.vertices_end(), partition_polys.begin(), partition_polys.end())); return 0; }