3D Spherical Geometry Kernel
Reference Manual

12.6   Geometric Concepts

SphericalKernel

Object types

SphericalKernel::CircularArc_3
SphericalKernel::CircularArcPoint_3
SphericalKernel::LineArc_3

Functors

SphericalKernel::ConstructPlane_3
SphericalKernel::ConstructSphere_3
SphericalKernel::ConstructLine_3
SphericalKernel::ConstructCircle_3
SphericalKernel::ConstructCircularArcPoint_3
SphericalKernel::ConstructLineArc_3
SphericalKernel::ConstructCircularArc_3

SphericalKernel::ConstructCircularMinVertex_3
SphericalKernel::ConstructCircularMaxVertex_3
SphericalKernel::ConstructCircularSourceVertex_3
SphericalKernel::ConstructCircularTargetVertex_3

SphericalKernel::ConstructBbox_3

SphericalKernel::CompareX_3
SphericalKernel::CompareY_3
SphericalKernel::CompareZ_3
SphericalKernel::CompareXY_3
SphericalKernel::CompareXYZ_3
SphericalKernel::CompareTheta_3
SphericalKernel::CompareThetaZ_3
SphericalKernel::CompareZAtTheta_3
SphericalKernel::CompareZToRight_3

SphericalKernel::Equal_3

SphericalKernel::HasOn_3

SphericalKernel::DoOverlap_3

SphericalKernel::DoIntersect_3

SphericalKernel::IsThetaMonotone_3

SphericalKernel::BoundedSide_3
SphericalKernel::HasOnBoundedSide_3
SphericalKernel::HasOnUnboundedSide_3

SphericalKernel::Intersect_3

SphericalKernel::Split_3

SphericalKernel::MakeThetaMonotone_3

SphericalKernel::ComputeCircularX_3
SphericalKernel::ComputeCircularY_3
SphericalKernel::ComputeCircularZ_3

SphericalKernel::ComputeApproximateSquaredLength_3
SphericalKernel::ComputeApproximateAngle_3

SphericalKernel::GetEquation

12.7   Geometric Kernels and Classes

Kernels

CGAL::Spherical_kernel_3<Kernel,AlgebraicKernelForSpheres>
CGAL::Exact_spherical_kernel_3

Points

CGAL::Circular_arc_point_3<SphericalKernel>

Arcs

CGAL::Line_arc_3<SphericalKernel>
CGAL::Circular_arc_3<SphericalKernel>

Constants and Enumerations

CGAL::Circle_type

12.8   Geometric Global Functions

CGAL::compare_x
CGAL::compare_y
CGAL::compare_z
CGAL::compare_xy
CGAL::compare_xyz
CGAL::compare_theta
CGAL::compare_theta_z

CGAL::is_theta_monotone

CGAL::classify

CGAL::x_extremal_point
CGAL::y_extremal_point
CGAL::z_extremal_point
CGAL::theta_extremal_point
CGAL::x_extremal_points
CGAL::y_extremal_points
CGAL::z_extremal_points
CGAL::theta_extremal_points

CGAL::do_intersect
CGAL::intersection

12.9   Algebraic Concepts

AlgebraicKernelForSpheres

Functors

AlgebraicKernelForSpheres::ConstructPolynomial_1_3
AlgebraicKernelForSpheres::ConstructPolynomialForSpheres_2_3

AlgebraicKernelForSpheres::ConstructPolynomialsForLines_3

AlgebraicKernelForSpheres::CompareX
AlgebraicKernelForSpheres::CompareY
AlgebraicKernelForSpheres::CompareZ
AlgebraicKernelForSpheres::CompareXY
AlgebraicKernelForSpheres::CompareXYZ

AlgebraicKernelForSpheres::SignAt

AlgebraicKernelForSpheres::XCriticalPoints
AlgebraicKernelForSpheres::YCriticalPoints
AlgebraicKernelForSpheres::ZCriticalPoints

AlgebraicKernelForSpheres::Solve

12.10   Algebraic Kernel and Classes

Kernel

CGAL::Algebraic_kernel_for_spheres_2_3<RT>

Polynomials

CGAL::Polynomial_1_3<RT>
CGAL::Polynomial_for_spheres_2_3<FT>

CGAL::Polynomials_for_lines_3<FT>

Roots of Polynomials

CGAL::Root_of_2<RT>
CGAL::Root_for_spheres_2_3<RT>

CGAL::Root_of_traits_2<RT>

12.11   Alphabetical List of Reference Pages

AlgebraicKernelForSpheres::CompareXYZ
AlgebraicKernelForSpheres::CompareXY
AlgebraicKernelForSpheres::CompareX
AlgebraicKernelForSpheres::CompareY
AlgebraicKernelForSpheres::CompareZ
AlgebraicKernelForSpheres::ConstructPolynomialForSpheres_2_3
AlgebraicKernelForSpheres::ConstructPolynomialsForLines_3
AlgebraicKernelForSpheres::ConstructPolynomial_1_3
AlgebraicKernelForSpheres::PolynomialForSpheres_2_3
AlgebraicKernelForSpheres::PolynomialsForCircles_3
AlgebraicKernelForSpheres::PolynomialsForLines_3
AlgebraicKernelForSpheres::Polynomial_1_3
AlgebraicKernelForSpheres::RootForSpheres_2_3
AlgebraicKernelForSpheres::SignAt
AlgebraicKernelForSpheres::Solve
AlgebraicKernelForSpheres::XCriticalPoints
AlgebraicKernelForSpheres::YCriticalPoints
AlgebraicKernelForSpheres::ZCriticalPoints
AlgebraicKernelForSpheres
Algebraic_kernel_for_spheres_2_3<RT>
Circle_type
Circular_arc_3<SphericalKernel>
Circular_arc_point_3<SphericalKernel>
classify
compare_theta_z
compare_theta
Exact_spherical_kernel_3
is_theta_monotone
Line_arc_3<SphericalKernel>
Polynomials_for_lines_3<FT>
Polynomial_1_3<RT>
Polynomial_for_spheres_2_3<FT>
Root_for_spheres_2_3<RT>
SphericalKernel::BoundedSide_3
SphericalKernel::CircularArcPoint_3
SphericalKernel::CircularArc_3
SphericalKernel::CompareThetaZ_3
SphericalKernel::CompareTheta_3
SphericalKernel::CompareXYZ_3
SphericalKernel::CompareXY_3
SphericalKernel::CompareX_3
SphericalKernel::CompareY_3
SphericalKernel::CompareZAtTheta_3
SphericalKernel::CompareZToRight_3
SphericalKernel::CompareZ_3
SphericalKernel::ComputeApproximateAngle_3
SphericalKernel::ComputeApproximateSquaredLength_3
SphericalKernel::ComputeCircularX_3
SphericalKernel::ComputeCircularY_3
SphericalKernel::ComputeCircularZ_3
SphericalKernel::ConstructBbox_3
SphericalKernel::ConstructCircle_3
SphericalKernel::ConstructCircularArcPoint_3
SphericalKernel::ConstructCircularArc_3
SphericalKernel::ConstructCircularMaxVertex_3
SphericalKernel::ConstructCircularMinVertex_3
SphericalKernel::ConstructCircularSourceVertex_3
SphericalKernel::ConstructCircularTargetVertex_3
SphericalKernel::ConstructLineArc_3
SphericalKernel::ConstructLine_3
SphericalKernel::ConstructPlane_3
SphericalKernel::ConstructSphere_3
SphericalKernel::DoIntersect_3
SphericalKernel::DoOverlap_3
SphericalKernel::Equal_3
SphericalKernel::GetEquation
SphericalKernel::HasOnBoundedSide_3
SphericalKernel::HasOnUnboundedSide_3
SphericalKernel::HasOn_3
SphericalKernel::Intersect_3
SphericalKernel::IsThetaMonotone_3
SphericalKernel::LineArc_3
SphericalKernel::MakeThetaMonotone_3
SphericalKernel::Split_3
SphericalKernel
Spherical_kernel_3<Kernel,AlgebraicKernelForSpheres>
theta_extremal_points
theta_extremal_point
x_extremal_points
x_extremal_point
y_extremal_points
y_extremal_point
z_extremal_points
z_extremal_point