58.1 | Definition | ||||
58.2 | Example Programs | ||||
58.2.1 First Example with Simple Interval | |||||
58.2.2 Example with Faces of a Triangulated Terrain |
An interval skip list is a data structure for finding all intervals that contain a point, and for stabbing queries, that is for answering the question whether a given point is contained in an interval or not. The implementation we provide is dynamic, that is the user can freely mix calls to the methods insert(..), remove(..), find_intervals(..), and is_contained(..)
The interval skip list class is parameterized with an interval class.
The data structure was introduced by Hanson [Han91], and it is called interval skip list, because it is an extension of the randomized list structure known as skip list [Pug90].
We give two examples. The first one uses a basic interval class. In the second example we create an interval skip list for the z-ranges of the faces of a terrain, allowing to answer level queries.
The first example reads two numbers n and d from std::cin. It creates n intervals of length d with the left endpoint at n. It then reads out the intervals for the 1-dimensional points with coordinates 0 ... n+d.
The interval skip list class has as template argument an interval class. In this example we use the class Interval_skip_list_interval.
File: examples/Interval_skip_list/intervals.cpp
#include <CGAL/Interval_skip_list.h> #include <CGAL/Interval_skip_list_interval.h> #include <vector> #include <list> #include <iostream> typedef CGAL::Interval_skip_list_interval<double> Interval; typedef CGAL::Interval_skip_list<Interval> Interval_skip_list; int main() { Interval_skip_list isl; int i, n, d; n = 10; d = 3; //std::cin >> n >> d; std::vector<Interval> intervals(n); for(i = 0; i < n; i++) { intervals[i] = Interval(i, i+d); } std::random_shuffle(intervals.begin(), intervals.end()); isl.insert(intervals.begin(), intervals.end()); for(i = 0; i < n+d; i++) { std::list<Interval> L; isl.find_intervals(i, std::back_inserter(L)); for(std::list<Interval>::iterator it = L.begin(); it != L.end(); it++){ std::cout << *it; } std::cout << std::endl; } for(i = 0; i < n; i++) { isl.remove(intervals[i]); } return 0; }
The second example creates an interval skip list that allows to find all the faces of a terrain intersected by an horizontal plane at a given height. The data points for the terrain are read from a file.
As model for the interval concept, we use a class that is a wrapper around a face handle of a triangulated terrain. Lower and upper bound of the interval are smallest and largest z-coordinate of the face.
File: examples/Interval_skip_list/isl_terrain.cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h> #include <CGAL/Delaunay_triangulation_2.h> #include <CGAL/Triangulation_euclidean_traits_xy_3.h> #include <CGAL/Interval_skip_list.h> #include <CGAL/Level_interval.h> #include <iostream> #include <fstream> typedef CGAL::Exact_predicates_inexact_constructions_kernel EIK; typedef EIK::Point_3 Point_3; typedef CGAL::Triangulation_euclidean_traits_xy_3<EIK> K; typedef CGAL::Delaunay_triangulation_2<K> Delaunay; typedef Delaunay::Face_handle Face_handle; typedef Delaunay::Finite_faces_iterator Finite_faces_iterator; typedef CGAL::Level_interval<Face_handle> Interval; typedef CGAL::Interval_skip_list<Interval> Interval_skip_list; int main() { std::ifstream fin("terrain.pts"); // elevation ranges from 0 to 100 Delaunay dt; dt.insert(std::istream_iterator<Point_3>(fin), std::istream_iterator<Point_3>()); Interval_skip_list isl; for(Finite_faces_iterator fh = dt.finite_faces_begin(); fh != dt.finite_faces_end(); ++fh){ isl.insert(Interval(fh)); } std::list<Interval> level; isl.find_intervals(50, std::back_inserter(level)); for(std::list<Interval>::iterator it = level.begin(); it != level.end(); ++it){ std::cout << dt.triangle(it->face_handle()) << std::endl; } return 0; }