CGAL 6.0.1 - Algebraic Foundations
|
AdaptableBinaryFunction
providing an integral division.
Integral division (a.k.a. exact division or division without remainder) maps ring elements (x,y) to ring element z such that x = yz if such a z exists (i.e. if x is divisible by y). Otherwise the effect of invoking this operation is undefined. Since the ring represented is an integral domain, z is uniquely defined if it exists.
AdaptableBinaryFunction
Types | |
typedef unspecified_type | result_type |
Is AlgebraicStructureTraits::Type . | |
typedef unspecified_type | first_argument |
Is AlgebraicStructureTraits::Type . | |
typedef unspecified_type | second_argument |
Is AlgebraicStructureTraits::Type . | |
Operations | |
result_type | operator() (first_argument_type x, second_argument_type y) |
returns x/y, this is an integral division. | |
template<class NT1 , class NT2 > | |
result_type | operator() (NT1 x, NT2 y) |
This operator is defined if NT1 and NT2 are ExplicitInteroperable with coercion type AlgebraicStructureTraits::Type . | |