CGAL 5.6.1 - 2D Alpha Shapes
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Alpha_shape_2.h>
#include <CGAL/Alpha_shape_vertex_base_2.h>
#include <CGAL/Alpha_shape_face_base_2.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <CGAL/algorithm.h>
#include <fstream>
#include <iostream>
#include <list>
#include <vector>
typedef K::FT FT;
typedef K::Point_2 Point;
typedef K::Segment_2 Segment;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> Tds;
typedef CGAL::Delaunay_triangulation_2<K,Tds> Triangulation_2;
typedef Alpha_shape_2::Alpha_shape_edges_iterator Alpha_shape_edges_iterator;
template <class OutputIterator>
void alpha_edges( const Alpha_shape_2& A, OutputIterator out)
Alpha_shape_edges_iterator it = A.alpha_shape_edges_begin(),
end = A.alpha_shape_edges_end();
for( ; it!=end; ++it)
*out++ = A.segment(*it);
template <class OutputIterator>
bool file_input(OutputIterator out)
std::ifstream is("data/fin", std::ios::in);
std::cerr << "unable to open file for input" << std::endl;
return false;
int n;
is >> n;
std::cout << "Reading " << n << " points from file" << std::endl;
std::copy_n(std::istream_iterator<Point>(is), n, out);
return true;
// Reads a list of points and returns a list of segments
// corresponding to the Alpha shape.
int main()
std::list<Point> points;
if(! file_input(std::back_inserter(points)))
return -1;
Alpha_shape_2 A(points.begin(), points.end(),
std::vector<Segment> segments;
alpha_edges(A, std::back_inserter(segments));
std::cout << "Alpha Shape computed" << std::endl;
std::cout << segments.size() << " alpha shape edges" << std::endl;
std::cout << "Optimal alpha: " << *A.find_optimal_alpha(1)<<std::endl;
return 0;