CGAL 6.0.1 - 2D Circular Geometry Kernel
|
Operations | |
A model of this concept must provide: | |
CircularKernel::Line_arc_2 | operator() (const CircularKernel::Line_2 &l, const CircularKernel::Circular_arc_point_2 &p1, const CircularKernel::Circular_arc_point_2 &p2) |
Constructs the line segment supported by l , whose source is p1 and whose target is p2 . | |
CircularKernel::Line_arc_2 | operator() (const CircularKernel::Segment_2 &s) |
CircularKernel::Line_arc_2 | operator() (const CircularKernel::Point_2 &p1, const CircularKernel::Point_2 &p2) |
CircularKernel::Line_arc_2 | operator() (const CircularKernel::Line_2 &l, const CircularKernel::Circle_2 &c1, bool b1, const CircularKernel::Circle_2 &c2, bool b2) |
Constructs the line segment whose supporting line is l , whose source endpoint is the \( b_1^{th}\) intersection of l with c1 , and whose target endpoint is the \( b_2^{th}\) intersection of l and c2 , where intersections are ordered lexicographically. | |
CircularKernel::Line_arc_2 | operator() (const CircularKernel::Line_2 &l, const CircularKernel::Line_2 &l1, const CircularKernel::Line_2 &l2) |
Same, for intersections defined by lines instead of circles. | |
CircularKernel::Line_arc_2 CircularKernel::ConstructLineArc_2::operator() | ( | const CircularKernel::Line_2 & | l, |
const CircularKernel::Circle_2 & | c1, | ||
bool | b1, | ||
const CircularKernel::Circle_2 & | c2, | ||
bool | b2 | ||
) |
Constructs the line segment whose supporting line is l
, whose source endpoint is the \( b_1^{th}\) intersection of l
with c1
, and whose target endpoint is the \( b_2^{th}\) intersection of l
and c2
, where intersections are ordered lexicographically.
l
intersects both c1
and c2
, and the arc defined by the intersections has non-zero length. CircularKernel::Line_arc_2 CircularKernel::ConstructLineArc_2::operator() | ( | const CircularKernel::Line_2 & | l, |
const CircularKernel::Circular_arc_point_2 & | p1, | ||
const CircularKernel::Circular_arc_point_2 & | p2 | ||
) |
Constructs the line segment supported by l
, whose source is p1
and whose target is p2
.
p1
and p2
lie on l
.