Loading web-font TeX/Math/Italic
 
CGAL 6.0.1 - Polynomial
All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Modules Pages
Loading...
Searching...
No Matches
PolynomialTraits_d::IsZeroAtHomogeneous Concept Reference

Definition

This AdaptableFunctor returns whether a PolynomialTraits_d::Polynomial_d p is zero at a given homogeneous point, which is given by an iterator range.

The polynomial is interpreted as a homogeneous polynomial in all variables.

For instance the polynomial p(x_0,x_1) = x_0^2x_1^3+x_1^4 is interpreted as the homogeneous polynomial p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1.

Refines
AdaptableFunctor
CopyConstructible
DefaultConstructible
See also
Polynomial_d
PolynomialTraits_d

Types

typedef bool result_type
 

Operations

template<class InputIterator >
result_type operator() (PolynomialTraits_d::Polynomial_d p, InputIterator begin, InputIterator end)
 Computes whether p is zero at the homogeneous point given by the iterator range, where begin is referring to the innermost variable.
 

Member Function Documentation

◆ operator()()

template<class InputIterator >
result_type PolynomialTraits_d::IsZeroAtHomogeneous::operator() ( PolynomialTraits_d::Polynomial_d  p,
InputIterator  begin,
InputIterator  end 
)

Computes whether p is zero at the homogeneous point given by the iterator range, where begin is referring to the innermost variable.

Precondition
(end-begin==PolynomialTraits_d::d+1)
std::iterator_traits< InputIterator >::value_type is ExplicitInteroperable with PolynomialTraits_d::Innermost_coefficient_type.