CGAL 5.5.2 - Polynomial
PolynomialTraits_d::PseudoDivisionRemainder Concept Reference

## Definition

This AdaptableBinaryFunction computes the remainder of the pseudo division of two polynomials $$f$$ and $$g$$.

Given $$f$$ and $$g \neq 0$$ one can compute quotient $$q$$ and remainder $$r$$ such that $$D \cdot f = g \cdot q + r$$ and $$degree(r) < degree(g)$$, where $$D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$$

This functor computes $$r$$.

Refines:

AdaptableBinaryFunction

CopyConstructible

DefaultConstructible

Polynomial_d
PolynomialTraits_d
PolynomialTraits_d::PseudoDivision
PolynomialTraits_d::PseudoDivisionRemainder
PolynomialTraits_d::PseudoDivisionQuotient

## Types

typedef PolynomialTraits_d::Polynomial_d result_type

typedef PolynomialTraits_d::Polynomial_d first_argument_type

typedef PolynomialTraits_d::Polynomial_d second_argument_type

## Operations

result_type operator() (first_argument_type f, second_argument_type g)
Returns the remainder $$r$$ of the pseudo division of $$f$$ and $$g$$ with respect to the outermost variable $$x_{d-1}$$.