 CGAL 5.3 - Polynomial
PolynomialTraits_d::SignAtHomogeneous Concept Reference

## Definition

This AdaptableFunctor returns the sign of a PolynomialTraits_d::Polynomial_d $$p$$ at a given homogeneous point, which is given by an iterator range.

The polynomial is interpreted as a homogeneous polynomial in all variables.

For instance the polynomial $$p(x_0,x_1) = x_0^2x_1^3+x_1^4$$ is interpreted as the homogeneous polynomial $$p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$$.

This functor is well defined if PolynomialTraits_d::Innermost_coefficient_type is RealEmbeddable.

Refines:

AdaptableFunctor

CopyConstructible

DefaultConstructible

Polynomial_d
PolynomialTraits_d

## Types

typedef CGAL::Sign result_type

## Operations

template<class InputIterator >
result_type operator() (PolynomialTraits_d::Polynomial_d p, InputIterator begin, InputIterator end)
Returns the sign of $$p$$ at the given homogeneous point, where begin is referring to the innermost variable. More...

## ◆ operator()()

template<class InputIterator >
 result_type PolynomialTraits_d::SignAtHomogeneous::operator() ( PolynomialTraits_d::Polynomial_d p, InputIterator begin, InputIterator end )

Returns the sign of $$p$$ at the given homogeneous point, where begin is referring to the innermost variable.

Precondition
(end-begin==PolynomialTraits_d::d+1)
std::iterator_traits< InputIterator >::value_type is ExplicitInteroperable with PolynomialTraits_d::Innermost_coefficient_type.