CGAL 6.0.1 - Polynomial
Loading...
Searching...
No Matches
CGAL Namespace Reference

Classes

class  Exponent_vector
 For a given (multivariate) monomial the vector of its exponents is called the exponent vector. More...
 
class  Polynomial
 An instance of the data type Polynomial represents a polynomial \( p = a_0 + a_1*x + ...a_i*x^i\) from the ring \( \mathrm{Coeff}[x]\). More...
 
class  Polynomial_traits_d
 A model of concept PolynomialTraits_d More...
 
struct  Polynomial_type_generator
 This class template provides a convenient way to obtain the type representing a multivariate polynomial with d variables, where T is the innermost coefficient type. More...
 

Functions

template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Canonicalize::result_type canonicalize (const Polynomial_d &p)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Compare::result_type compare (const Polynomial_d &p, const Polynomial_d &q)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Degree::result_type degree (const Polynomial_d &p, int i, index=Polynomial_traits_d< Polynomial_d >::d-1)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Degree_vector::result_type degree_vector (const Polynomial_d &p)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Differentiate::result_type differentiate (const Polynomial_d &p, index=Polynomial_traits_d< Polynomial_d >::d-1)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Evaluate_homogeneous::result_type evaluate_homogeneous (const Polynomial_d &p, Polynomial_traits_d< Polynomial_d >::Coefficient_type u, Polynomial_traits_d< Polynomial_d >::Coefficient_type v)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Evaluate::result_type evaluate (const Polynomial_d &p, Polynomial_traits_d< Polynomial_d >::Coefficient_type x)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Gcd_up_to_constant_factor::result_type gcd_up_to_constant_factor (const Polynomial_d &p, const Polynomial_d &q)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::get_coefficient::result_type get_coefficient (const Polynomial_d &p, int i)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::get_innermost_coefficient::result_type get_innermost_coefficient (const Polynomial_d &p, Exponent_vector ev)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Innermost_leading_coefficient::result_type innermost_leading_coefficient (const Polynomial_d &p)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Integral_division_up_to_constant_factor::result_type integral_division_up_to_constant_factor (const Polynomial_d &p, const Polynomial_d &q)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Invert::result_type invert (const Polynomial_d &p, int index=Polynomial_traits_d< Polynomial_d >::d-1)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Is_square_free::result_type is_square_free (const Polynomial_d &p)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d , class InputIterator >
Polynomial_traits_d< Polynomial_d >::Is_zero_at_homogeneous::result_type is_zero_at_homogeneous (const Polynomial_d &p, InputIterator begin, InputIterator end)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d , class InputIterator >
Polynomial_traits_d< Polynomial_d >::Is_zero_at::result_type is_zero_at (const Polynomial_d &p, InputIterator begin, InputIterator end)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Leading_coefficient::result_type leading_coefficient (const Polynomial_d &p)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Make_square_free::result_type make_square_free (const Polynomial_d &p)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Move::result_type move (const Polynomial_d &p, int i, int j)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Multivariate_content::result_type multivariate_content (const Polynomial_d &p)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Negate::result_type negate (const Polynomial_d &p, int index=Polynomial_traits_d< Polynomial_d >::d-1)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<typename Polynomial_d >
int number_of_real_roots (Polynomial_d f)
 computes the number of distinct real roots of \(f\).
 
template<typename InputIterator >
int number_of_real_roots (InputIterator start, InputIterator end)
 computes the number of distinct real roots of \( f\) whose principal Sturm-Habicht coefficients are passed by the iterator range.
 
template<class Polynomial_d , class InputIterator >
Polynomial_traits_d< Polynomial_d >::Permute::result_type permute (const Polynomial_d &p, InputIterator begin, InputIterator end)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<typename Polynomial_d , typename OutputIterator >
OutputIterator polynomial_subresultants (Polynomial_d p, Polynomial_d q, OutputIterator out)
 computes the polynomial subresultants of \( p\) and \( q\), with respect to the outermost variable.
 
template<typename Polynomial_d , typename OutputIterator1 , typename OutputIterator2 , typename OutputIterator3 >
OutputIterator1 polynomial_subresultants_with_cofactors (Polynomial_d p, Polynomial_d q, OutputIterator1 sres_out, OutputIterator2 coP_out, OutputIterator3 coQ_out)
 computes the polynomial subresultants of \( p\) and \( q\), sres_out, with respect to the outermost variable, and the cofactors for \( P\), coP_out and \( Q\), coQ_out.
 
template<typename Polynomial_d , typename OutputIterator >
OutputIterator principal_sturm_habicht_sequence (typename Polynomial_d f, OutputIterator out)
 computes the principal Sturm-Habicht coefficients of \( f\) with respect to the outermost variable.
 
template<typename Polynomial_d , typename OutputIterator >
OutputIterator principal_subresultants (Polynomial_d p, Polynomial_d q, OutputIterator out)
 computes the principal subresultants of \( p\) and \( q\), with respect to the outermost variable.
 
template<class Polynomial_d >
void pseudo_division (const Polynomial_d &f, const Polynomial_d &g, Polynomial_d &q, Polynomial_d &r, Polynomial_traits_d< Polynomial_d >::Coefficient_type &D)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Pseudo_division_quotient::result_type pseudo_division_quotient (const Polynomial_d &p, const Polynomial_d &q)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Pseudo_division_remainder::result_type pseudo_division_remainder (const Polynomial_d &p, const Polynomial_d &q)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Resultant::result_type resultant (const Polynomial_d &p, const Polynomial_d &q)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Scale_homogeneous::result_type scale_homogeneous (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &u, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &v, int index=Polynomial_traits_d< Polynomial_d >::d-1)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Scale::result_type scale (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &a, int index=Polynomial_traits_d< Polynomial_d >::d-1)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Shift::result_type shift (const Polynomial_d &p, int i, int index=Polynomial_traits_d< Polynomial_d >::d-1)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d , class InputIterator >
Polynomial_traits_d< Polynomial_d >::Sign_at_homogeneous::result_type sign_at_homogeneous (const Polynomial_d &p, InputIterator begin, InputIterator end)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d , class InputIterator >
Polynomial_traits_d< Polynomial_d >::Sign_at::result_type sign_at (const Polynomial_d &p, InputIterator begin, InputIterator end)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d , class OutputIterator >
OutputIterator square_free_factorize (const Polynomial_d &p, OutputIterator it, Polynomial_traits_d< Polynomial >::Innermost_coefficient &a)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d , class OutputIterator >
OutputIterator square_free_factorize (const Polynomial_d &p, OutputIterator it)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d , class OutputIterator >
OutputIterator square_free_factorize_up_to_constant_factor (const Polynomial_d &p, OutputIterator it)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<typename Polynomial_d , typename OutputIterator >
OutputIterator sturm_habicht_sequence (Polynomial_d f, OutputIterator out)
 computes the Sturm-Habicht-sequence of \( f\) with respect to the outermost variable.
 
template<typename Polynomial_d , typename OutputIterator1 , typename OutputIterator2 , typename OutputIterator3 >
OutputIterator1 sturm_habicht_sequence_with_cofactors (Polynomial_d f, OutputIterator1 stha_out, OutputIterator2 cof_out, OutputIterator3 cofx_out)
 computes the Sturm-Habicht sequence of \( f\) stha_out, with respect to the outermost variable, and the cofactors for \( f\), cof_out and \( f'\), cofx_out.
 
template<class Polynomial_d , class InputIterator >
CGAL::Coercion_traits< Polynomial_traits_d< Polynomial_d >::Innermost_coefficient, std::iterator_traits< Input_iterator >::value_type >::Type substitute_homogeneous (const Polynomial_d &p, InputIterator begin, InputIterator end)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d , class InputIterator >
CGAL::Coercion_traits< Polynomial_traits_d< Polynomial_d >::Innermost_coefficient, std::iterator_traits< Input_iterator >::value_type >::Type substitute (const Polynomial_d &p, InputIterator begin, InputIterator end)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Swap::result_type swap (const Polynomial_d &p, int i, int j)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Total_degree::result_type total_degree (const Polynomial_d &p)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Translate_homogeneous::result_type translate_homogeneous (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &u, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &v, int index=Polynomial_traits_d< Polynomial_d >::d-1)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Translate::result_type translate (const Polynomial_d &p, const Polynomial_traits_d< Polynomial_d >::Innermost_coefficient_type &a, int index=Polynomial_traits_d< Polynomial_d >::d-1)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Univariate_content::result_type univariate_content (const Polynomial_d &p)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.
 
template<class Polynomial_d >
Polynomial_traits_d< Polynomial_d >::Univariate_content_up_to_constant_factor::result_type univariate_content_up_to_constant_factor (const Polynomial_d &p)
 For a given Polynomial_d, adapts the according functor in Polynomial_traits_d<Polynomial_d>.